生成对抗网络训练的随机微分方程逼近及其长期行为

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Haoyang Cao, Xin Guo
{"title":"生成对抗网络训练的随机微分方程逼近及其长期行为","authors":"Haoyang Cao, Xin Guo","doi":"10.1017/jpr.2023.57","DOIUrl":null,"url":null,"abstract":"Abstract This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"3 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic differential equation approximations of generative adversarial network training and its long-run behavior\",\"authors\":\"Haoyang Cao, Xin Guo\",\"doi\":\"10.1017/jpr.2023.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2023.57\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jpr.2023.57","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用随机微分方程分析了生成式对抗网络(GANs)的训练过程。首先建立了随机梯度算法下GANs训练的SDE近似,并进行了精确的误差界分析。然后,它通过在适当条件下的SDE近似的不变度量来描述GAN训练的长期行为。这项工作为GAN训练奠定了理论基础,并为研究GAN的演化和稳定性提供了分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic differential equation approximations of generative adversarial network training and its long-run behavior
Abstract This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信