Jesús Domínguez, Denys Prociuk, Branko Marović, Kristijonas Čyras, Oana Cocarascu, Francis Ruiz, Ella Mi, Emma Mi, Christian Ramtale, Antonio Rago, Ara Darzi, Francesca Toni, Vasa Curcin, Brendan Delaney
{"title":"ROAD2H:开发和评估用于管理共病和临床指南的开源可解释人工智能方法","authors":"Jesús Domínguez, Denys Prociuk, Branko Marović, Kristijonas Čyras, Oana Cocarascu, Francis Ruiz, Ella Mi, Emma Mi, Christian Ramtale, Antonio Rago, Ara Darzi, Francesca Toni, Vasa Curcin, Brendan Delaney","doi":"10.1002/lrh2.10391","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Clinical decision support (CDS) systems (CDSSs) that integrate clinical guidelines need to reflect real-world co-morbidity. In patient-specific clinical contexts, transparent recommendations that allow for contraindications and other conflicts arising from co-morbidity are a requirement. In this work, we develop and evaluate a non-proprietary, standards-based approach to the deployment of computable guidelines with explainable argumentation, integrated with a commercial electronic health record (EHR) system in Serbia, a middle-income country in West Balkans.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used an ontological framework, the Transition-based Medical Recommendation (TMR) model, to represent, and reason about, guideline concepts, and chose the 2017 International global initiative for chronic obstructive lung disease (GOLD) guideline and a Serbian hospital as the deployment and evaluation site, respectively. To mitigate potential guideline conflicts, we used a TMR-based implementation of the Assumptions-Based Argumentation framework extended with preferences and Goals (ABA+G). Remote EHR integration of computable guidelines was via a microservice architecture based on HL7 FHIR and CDS Hooks. A prototype integration was developed to manage chronic obstructive pulmonary disease (COPD) with comorbid cardiovascular or chronic kidney diseases, and a mixed-methods evaluation was conducted with 20 simulated cases and five pulmonologists.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Pulmonologists agreed 97% of the time with the GOLD-based COPD symptom severity assessment assigned to each patient by the CDSS, and 98% of the time with one of the proposed COPD care plans. Comments were favourable on the principles of explainable argumentation; inclusion of additional co-morbidities was suggested in the future along with customisation of the level of explanation with expertise.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>An ontological model provided a flexible means of providing argumentation and explainable artificial intelligence for a long-term condition. Extension to other guidelines and multiple co-morbidities is needed to test the approach further.</p>\n </section>\n </div>","PeriodicalId":43916,"journal":{"name":"Learning Health Systems","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lrh2.10391","citationCount":"0","resultStr":"{\"title\":\"ROAD2H: Development and evaluation of an open-source explainable artificial intelligence approach for managing co-morbidity and clinical guidelines\",\"authors\":\"Jesús Domínguez, Denys Prociuk, Branko Marović, Kristijonas Čyras, Oana Cocarascu, Francis Ruiz, Ella Mi, Emma Mi, Christian Ramtale, Antonio Rago, Ara Darzi, Francesca Toni, Vasa Curcin, Brendan Delaney\",\"doi\":\"10.1002/lrh2.10391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>Clinical decision support (CDS) systems (CDSSs) that integrate clinical guidelines need to reflect real-world co-morbidity. In patient-specific clinical contexts, transparent recommendations that allow for contraindications and other conflicts arising from co-morbidity are a requirement. In this work, we develop and evaluate a non-proprietary, standards-based approach to the deployment of computable guidelines with explainable argumentation, integrated with a commercial electronic health record (EHR) system in Serbia, a middle-income country in West Balkans.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used an ontological framework, the Transition-based Medical Recommendation (TMR) model, to represent, and reason about, guideline concepts, and chose the 2017 International global initiative for chronic obstructive lung disease (GOLD) guideline and a Serbian hospital as the deployment and evaluation site, respectively. To mitigate potential guideline conflicts, we used a TMR-based implementation of the Assumptions-Based Argumentation framework extended with preferences and Goals (ABA+G). Remote EHR integration of computable guidelines was via a microservice architecture based on HL7 FHIR and CDS Hooks. A prototype integration was developed to manage chronic obstructive pulmonary disease (COPD) with comorbid cardiovascular or chronic kidney diseases, and a mixed-methods evaluation was conducted with 20 simulated cases and five pulmonologists.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Pulmonologists agreed 97% of the time with the GOLD-based COPD symptom severity assessment assigned to each patient by the CDSS, and 98% of the time with one of the proposed COPD care plans. Comments were favourable on the principles of explainable argumentation; inclusion of additional co-morbidities was suggested in the future along with customisation of the level of explanation with expertise.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>An ontological model provided a flexible means of providing argumentation and explainable artificial intelligence for a long-term condition. Extension to other guidelines and multiple co-morbidities is needed to test the approach further.</p>\\n </section>\\n </div>\",\"PeriodicalId\":43916,\"journal\":{\"name\":\"Learning Health Systems\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lrh2.10391\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lrh2.10391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lrh2.10391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
ROAD2H: Development and evaluation of an open-source explainable artificial intelligence approach for managing co-morbidity and clinical guidelines
Introduction
Clinical decision support (CDS) systems (CDSSs) that integrate clinical guidelines need to reflect real-world co-morbidity. In patient-specific clinical contexts, transparent recommendations that allow for contraindications and other conflicts arising from co-morbidity are a requirement. In this work, we develop and evaluate a non-proprietary, standards-based approach to the deployment of computable guidelines with explainable argumentation, integrated with a commercial electronic health record (EHR) system in Serbia, a middle-income country in West Balkans.
Methods
We used an ontological framework, the Transition-based Medical Recommendation (TMR) model, to represent, and reason about, guideline concepts, and chose the 2017 International global initiative for chronic obstructive lung disease (GOLD) guideline and a Serbian hospital as the deployment and evaluation site, respectively. To mitigate potential guideline conflicts, we used a TMR-based implementation of the Assumptions-Based Argumentation framework extended with preferences and Goals (ABA+G). Remote EHR integration of computable guidelines was via a microservice architecture based on HL7 FHIR and CDS Hooks. A prototype integration was developed to manage chronic obstructive pulmonary disease (COPD) with comorbid cardiovascular or chronic kidney diseases, and a mixed-methods evaluation was conducted with 20 simulated cases and five pulmonologists.
Results
Pulmonologists agreed 97% of the time with the GOLD-based COPD symptom severity assessment assigned to each patient by the CDSS, and 98% of the time with one of the proposed COPD care plans. Comments were favourable on the principles of explainable argumentation; inclusion of additional co-morbidities was suggested in the future along with customisation of the level of explanation with expertise.
Conclusion
An ontological model provided a flexible means of providing argumentation and explainable artificial intelligence for a long-term condition. Extension to other guidelines and multiple co-morbidities is needed to test the approach further.