在混合曲线上

Mücahit AKBIYIK
{"title":"在混合曲线上","authors":"Mücahit AKBIYIK","doi":"10.30931/jetas.1338660","DOIUrl":null,"url":null,"abstract":"In this paper, we first define the vector product in a special analog Minkowski Geometry $(\\mathbb{R}^3,\\langle,\\rangle) $ which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret Frame formulae of a non-lightlike hybrid curve in $\\mathbb{R}^4$ and an illustrative example for all theorems of the paper with Matlab codes.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON HYBRID CURVES\",\"authors\":\"Mücahit AKBIYIK\",\"doi\":\"10.30931/jetas.1338660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first define the vector product in a special analog Minkowski Geometry $(\\\\mathbb{R}^3,\\\\langle,\\\\rangle) $ which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret Frame formulae of a non-lightlike hybrid curve in $\\\\mathbb{R}^4$ and an illustrative example for all theorems of the paper with Matlab codes.\",\"PeriodicalId\":7757,\"journal\":{\"name\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30931/jetas.1338660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30931/jetas.1338660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先定义了一种特殊的模拟Minkowski几何$(\mathbb{R}^3,\langle,\rangle) $中的向量积,该向量积被识别为空间杂化空间。其次,我们利用空间杂化和矢量积导出了三维非抛物曲线的Frenet-Serret框架公式。然而,我们在$\mathbb{R}^4$中给出了非类光混合曲线的Frenet-Serret Frame公式,并用Matlab代码给出了本文所有定理的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON HYBRID CURVES
In this paper, we first define the vector product in a special analog Minkowski Geometry $(\mathbb{R}^3,\langle,\rangle) $ which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret Frame formulae of a non-lightlike hybrid curve in $\mathbb{R}^4$ and an illustrative example for all theorems of the paper with Matlab codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信