{"title":"论图诱导符号系统","authors":"Prashant Kumar, Puneet Sharma","doi":"10.4995/agt.2023.16662","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient conditions under which these questions can be answered affirmatively. We investigate the structure of the shift space using the generating matrices. We prove that any d-dimensional shift of finite type is finite if and only if it is conjugate to a shift generated through permutation matrices. We prove that if any triangular pattern of the form a b c can be extended to a 1 x 1 square then the two dimensional shift space possesses periodic points. We introduce the notion of an E-pair for a two dimensional shift space. Using the notion of an E-pair, we derive sufficient conditions for non-emptiness of the two dimensional shift space under discussion.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"25 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On graph induced symbolic systems\",\"authors\":\"Prashant Kumar, Puneet Sharma\",\"doi\":\"10.4995/agt.2023.16662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient conditions under which these questions can be answered affirmatively. We investigate the structure of the shift space using the generating matrices. We prove that any d-dimensional shift of finite type is finite if and only if it is conjugate to a shift generated through permutation matrices. We prove that if any triangular pattern of the form a b c can be extended to a 1 x 1 square then the two dimensional shift space possesses periodic points. We introduce the notion of an E-pair for a two dimensional shift space. Using the notion of an E-pair, we derive sufficient conditions for non-emptiness of the two dimensional shift space under discussion.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2023.16662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2023.16662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
本文研究了由多维图g产生的移动空间,特别是研究了多维移动空间周期点的非空性和存在性。我们推导出这些问题可以被肯定地回答的充分条件。我们利用生成矩阵研究了移位空间的结构。证明任何有限型的d维位移是有限的当且仅当它共轭于由置换矩阵产生的位移。我们证明了如果任何形式为a b c的三角形图形可以扩展到1 x 1的平方,则二维移位空间具有周期点。我们在二维移位空间中引入了e对的概念。利用e对的概念,给出了二维位移空间不空的充分条件。
In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient conditions under which these questions can be answered affirmatively. We investigate the structure of the shift space using the generating matrices. We prove that any d-dimensional shift of finite type is finite if and only if it is conjugate to a shift generated through permutation matrices. We prove that if any triangular pattern of the form a b c can be extended to a 1 x 1 square then the two dimensional shift space possesses periodic points. We introduce the notion of an E-pair for a two dimensional shift space. Using the notion of an E-pair, we derive sufficient conditions for non-emptiness of the two dimensional shift space under discussion.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.