在低树宽网络中嵌入系统发育树

IF 0.7 4区 数学
Leo van Iersel, Mark Jones, Mathias Weller
{"title":"在低树宽网络中嵌入系统发育树","authors":"Leo van Iersel, Mark Jones, Mathias Weller","doi":"10.46298/dmtcs.10116","DOIUrl":null,"url":null,"abstract":"Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called \\textsc{Tree Containment}, arises when validating networks constructed by phylogenetic inference methods.We present the first algorithm for (rooted) \\textsc{Tree Containment} using the treewidth $t$ of the input network $N$ as parameter, showing that the problem can be solved in $2^{O(t^2)}\\cdot|N|$ time and space.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding phylogenetic trees in networks of low treewidth\",\"authors\":\"Leo van Iersel, Mark Jones, Mathias Weller\",\"doi\":\"10.46298/dmtcs.10116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called \\\\textsc{Tree Containment}, arises when validating networks constructed by phylogenetic inference methods.We present the first algorithm for (rooted) \\\\textsc{Tree Containment} using the treewidth $t$ of the input network $N$ as parameter, showing that the problem can be solved in $2^{O(t^2)}\\\\cdot|N|$ time and space.\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.10116\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.10116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有根的二叉系统发育网络和一个有根的二叉系统发育树,这个树能嵌入到网络中吗?当验证由系统发育推断方法构建的网络时,会出现这个问题,称为\textsc{树遏制}。我们使用输入网络$N$的\textsc{树}宽$t$作为参数,提出了(根)树包容的第一个算法,表明该问题可以在$2^{O(t^2)}\cdot|N|$时间和空间上解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding phylogenetic trees in networks of low treewidth
Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called \textsc{Tree Containment}, arises when validating networks constructed by phylogenetic inference methods.We present the first algorithm for (rooted) \textsc{Tree Containment} using the treewidth $t$ of the input network $N$ as parameter, showing that the problem can be solved in $2^{O(t^2)}\cdot|N|$ time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信