{"title":"一类4属正则曲线的伽罗瓦线:斜循环线","authors":"Jiryo Komeda, Takeshi Takahashi","doi":"10.4171/rsmup/141","DOIUrl":null,"url":null,"abstract":"Let $C \\subset \\mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic zero. For a line $l$, we consider the projection $\\pi\\_l\\colon C \\rightarrow \\mathbb{P}^1$ with center $l$ and the extension of the function fields $\\pi^\\_l\\colon k(\\mathbb{P}^1) \\hookrightarrow k(C)$. A line $l$ is referred to as a cyclic line if the extension $k(C)/\\pi\\_l^(k(\\mathbb{P}^1))$ is cyclic. A line $l \\subset \\mathbb{P}^3$ is said to be skew if $C \\cap l = \\emptyset$. We prove that the number of skew cyclic lines is equal to $0,1,3$ or $9$. We determine curves that have nine skew cyclic lines.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Galois lines for a canonical curve of genus 4, II: Skew cyclic lines\",\"authors\":\"Jiryo Komeda, Takeshi Takahashi\",\"doi\":\"10.4171/rsmup/141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $C \\\\subset \\\\mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic zero. For a line $l$, we consider the projection $\\\\pi\\\\_l\\\\colon C \\\\rightarrow \\\\mathbb{P}^1$ with center $l$ and the extension of the function fields $\\\\pi^\\\\_l\\\\colon k(\\\\mathbb{P}^1) \\\\hookrightarrow k(C)$. A line $l$ is referred to as a cyclic line if the extension $k(C)/\\\\pi\\\\_l^(k(\\\\mathbb{P}^1))$ is cyclic. A line $l \\\\subset \\\\mathbb{P}^3$ is said to be skew if $C \\\\cap l = \\\\emptyset$. We prove that the number of skew cyclic lines is equal to $0,1,3$ or $9$. We determine curves that have nine skew cyclic lines.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设$C \subset \mathbb{P}^3$为特征为零的代数闭域$k$上的属$4$的正则曲线。对于直线$l$,我们考虑以$l$为中心的投影$\pi\_l\colon C \rightarrow \mathbb{P}^1$和函数域$\pi^\_l\colon k(\mathbb{P}^1) \hookrightarrow k(C)$的扩展。如果扩展$k(C)/\pi\_l^(k(\mathbb{P}^1))$是循环的,则将行$l$称为循环线。如果是$C \cap l = \emptyset$,就说一条线$l \subset \mathbb{P}^3$是倾斜的。证明了歪斜环状线的个数等于$0,1,3$或$9$。我们确定有九条歪斜循环线的曲线。
Galois lines for a canonical curve of genus 4, II: Skew cyclic lines
Let $C \subset \mathbb{P}^3$ be a canonical curve of genus $4$ over an algebraically closed field $k$ of characteristic zero. For a line $l$, we consider the projection $\pi\_l\colon C \rightarrow \mathbb{P}^1$ with center $l$ and the extension of the function fields $\pi^\_l\colon k(\mathbb{P}^1) \hookrightarrow k(C)$. A line $l$ is referred to as a cyclic line if the extension $k(C)/\pi\_l^(k(\mathbb{P}^1))$ is cyclic. A line $l \subset \mathbb{P}^3$ is said to be skew if $C \cap l = \emptyset$. We prove that the number of skew cyclic lines is equal to $0,1,3$ or $9$. We determine curves that have nine skew cyclic lines.