Shihua Li, Sen Wang, Haoran Li, Yongjie Wang, Shuang Chen
{"title":"高刚度闭环单元全解耦三平移并联机构的类型综合","authors":"Shihua Li, Sen Wang, Haoran Li, Yongjie Wang, Shuang Chen","doi":"10.1186/s10033-023-00908-3","DOIUrl":null,"url":null,"abstract":"Abstract In order to solve the problem of weak stiffness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stiffness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stiffness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stiffness fully decoupled 3T PM. Kinematic and stiffness analyses show that the Jacobian matrix is a diagonal matrix, and the stiffness is obviously higher than that of the coupling mechanisms, which verifies the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"115 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type Synthesis of Fully Decoupled Three Translational Parallel Mechanism with Closed-Loop Units and High Stiffness\",\"authors\":\"Shihua Li, Sen Wang, Haoran Li, Yongjie Wang, Shuang Chen\",\"doi\":\"10.1186/s10033-023-00908-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to solve the problem of weak stiffness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stiffness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stiffness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stiffness fully decoupled 3T PM. Kinematic and stiffness analyses show that the Jacobian matrix is a diagonal matrix, and the stiffness is obviously higher than that of the coupling mechanisms, which verifies the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.\",\"PeriodicalId\":10115,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s10033-023-00908-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00908-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Type Synthesis of Fully Decoupled Three Translational Parallel Mechanism with Closed-Loop Units and High Stiffness
Abstract In order to solve the problem of weak stiffness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stiffness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stiffness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stiffness fully decoupled 3T PM. Kinematic and stiffness analyses show that the Jacobian matrix is a diagonal matrix, and the stiffness is obviously higher than that of the coupling mechanisms, which verifies the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.