关于没有AC的Erdős-Dushnik-Miller定理

Amitayu Banerjee, Alexa Gopaulsingh
{"title":"关于没有AC的Erdős-Dushnik-Miller定理","authors":"Amitayu Banerjee, Alexa Gopaulsingh","doi":"10.4064/ba221221-6-6","DOIUrl":null,"url":null,"abstract":"In $\\mathsf {ZFA}$ (Zermelo–Fraenkel set theory with the Axiom of Extensionality weakened to allow the existence of atoms), we prove that the strength of the proposition $\\mathsf {EDM}$ (“If $G=(V_{G}, E_{G})$ is a graph such that $V_{G}$ is uncountable,","PeriodicalId":487279,"journal":{"name":"Bulletin of the Polish Academy of Sciences. Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Erdős–Dushnik–Miller theorem without AC\",\"authors\":\"Amitayu Banerjee, Alexa Gopaulsingh\",\"doi\":\"10.4064/ba221221-6-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In $\\\\mathsf {ZFA}$ (Zermelo–Fraenkel set theory with the Axiom of Extensionality weakened to allow the existence of atoms), we prove that the strength of the proposition $\\\\mathsf {EDM}$ (“If $G=(V_{G}, E_{G})$ is a graph such that $V_{G}$ is uncountable,\",\"PeriodicalId\":487279,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences. Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/ba221221-6-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/ba221221-6-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在$\mathsf {ZFA}$(扩展公理削弱到允许原子存在的Zermelo-Fraenkel集合论)中,我们证明了命题$\mathsf {EDM}$(“如果$G=(V_{G}, E_{G})$是一个图,使得$V_{G}$不可数,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Erdős–Dushnik–Miller theorem without AC
In $\mathsf {ZFA}$ (Zermelo–Fraenkel set theory with the Axiom of Extensionality weakened to allow the existence of atoms), we prove that the strength of the proposition $\mathsf {EDM}$ (“If $G=(V_{G}, E_{G})$ is a graph such that $V_{G}$ is uncountable,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信