{"title":"抛物型耦合系统的反馈镇定及其数值研究","authors":"Wasim Akram, Debanjana Mitra, Neela Nataraj, Mythily Ramaswamy","doi":"10.3934/mcrf.2023022","DOIUrl":null,"url":null,"abstract":"In the first part of this article, we study feedback stabilization of a parabolic coupled system by using localized interior controls. The system is feedback stabilizable with exponential decay $ -\\omega<0 $ for any $ \\omega>0 $. A stabilizing control is found in feedback form by solving a suitable algebraic Riccati equation. In the second part, a conforming finite element method is employed to approximate the continuous system by a finite dimensional discrete system. The approximated system is also feedback stabilizable (uniformly) with exponential decay $ -\\omega+\\epsilon $, for any $ \\epsilon>0 $ and the feedback control is obtained by solving a discrete algebraic Riccati equation. The error estimate of stabilized solutions as well as stabilizing feedback controls are obtained. We validate the theoretical results by numerical implementations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback stabilization of a parabolic coupled system and its numerical study\",\"authors\":\"Wasim Akram, Debanjana Mitra, Neela Nataraj, Mythily Ramaswamy\",\"doi\":\"10.3934/mcrf.2023022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of this article, we study feedback stabilization of a parabolic coupled system by using localized interior controls. The system is feedback stabilizable with exponential decay $ -\\\\omega<0 $ for any $ \\\\omega>0 $. A stabilizing control is found in feedback form by solving a suitable algebraic Riccati equation. In the second part, a conforming finite element method is employed to approximate the continuous system by a finite dimensional discrete system. The approximated system is also feedback stabilizable (uniformly) with exponential decay $ -\\\\omega+\\\\epsilon $, for any $ \\\\epsilon>0 $ and the feedback control is obtained by solving a discrete algebraic Riccati equation. The error estimate of stabilized solutions as well as stabilizing feedback controls are obtained. We validate the theoretical results by numerical implementations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2023022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2023022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Feedback stabilization of a parabolic coupled system and its numerical study
In the first part of this article, we study feedback stabilization of a parabolic coupled system by using localized interior controls. The system is feedback stabilizable with exponential decay $ -\omega<0 $ for any $ \omega>0 $. A stabilizing control is found in feedback form by solving a suitable algebraic Riccati equation. In the second part, a conforming finite element method is employed to approximate the continuous system by a finite dimensional discrete system. The approximated system is also feedback stabilizable (uniformly) with exponential decay $ -\omega+\epsilon $, for any $ \epsilon>0 $ and the feedback control is obtained by solving a discrete algebraic Riccati equation. The error estimate of stabilized solutions as well as stabilizing feedback controls are obtained. We validate the theoretical results by numerical implementations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.