{"title":"生物聚合物在植被土壤中促进植被生长和提高整体强度","authors":"Jing Ni, Zi-Teng Wang, Xueyu Geng","doi":"10.1139/cgj-2022-0049","DOIUrl":null,"url":null,"abstract":"Planting vegetation is a sustainable and eco-friendly method for shallow slope stabilization. However, in water-limited regions, this method is facing challenges like retarded vegetation growth, which leads to unprotected soils. Biopolymer, with potentials in both vegetation growth promotion and soil strength enhancement, is therefore tested in this paper with regard to its possibility in assisting soil reinforcement with vegetation through vegetation cultivation and direct shear tests. Both sugar-based and protein-based biopolymers improved water availability to growing plants and nutrient uptake. The most suitable polysaccharide xanthan gum was adopted to further explore the effects of treatment condition (i.e., blending content) and external environment (i.e., precipitation) on the vegetated soil performances. Under a variety of water supply, xanthan gum with a medium blending content of 0.5% (i.e., with respect to dry soil mass) led to the most substantial improvement in the ability to resist shear loading. This indicates that the appropriate dosage of biopolymer used at the initial stage of plant growth, should provide moderate bond strength between soil particles, whilst not impeding root penetration. Supported by the obtained results, biopolymer is suggested to be used in combination with plants for soil reinforcement for the best efficiency.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"27 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vegetation growth promotion and overall strength improvement using biopolymers in vegetated soils\",\"authors\":\"Jing Ni, Zi-Teng Wang, Xueyu Geng\",\"doi\":\"10.1139/cgj-2022-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planting vegetation is a sustainable and eco-friendly method for shallow slope stabilization. However, in water-limited regions, this method is facing challenges like retarded vegetation growth, which leads to unprotected soils. Biopolymer, with potentials in both vegetation growth promotion and soil strength enhancement, is therefore tested in this paper with regard to its possibility in assisting soil reinforcement with vegetation through vegetation cultivation and direct shear tests. Both sugar-based and protein-based biopolymers improved water availability to growing plants and nutrient uptake. The most suitable polysaccharide xanthan gum was adopted to further explore the effects of treatment condition (i.e., blending content) and external environment (i.e., precipitation) on the vegetated soil performances. Under a variety of water supply, xanthan gum with a medium blending content of 0.5% (i.e., with respect to dry soil mass) led to the most substantial improvement in the ability to resist shear loading. This indicates that the appropriate dosage of biopolymer used at the initial stage of plant growth, should provide moderate bond strength between soil particles, whilst not impeding root penetration. Supported by the obtained results, biopolymer is suggested to be used in combination with plants for soil reinforcement for the best efficiency.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2022-0049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2022-0049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Vegetation growth promotion and overall strength improvement using biopolymers in vegetated soils
Planting vegetation is a sustainable and eco-friendly method for shallow slope stabilization. However, in water-limited regions, this method is facing challenges like retarded vegetation growth, which leads to unprotected soils. Biopolymer, with potentials in both vegetation growth promotion and soil strength enhancement, is therefore tested in this paper with regard to its possibility in assisting soil reinforcement with vegetation through vegetation cultivation and direct shear tests. Both sugar-based and protein-based biopolymers improved water availability to growing plants and nutrient uptake. The most suitable polysaccharide xanthan gum was adopted to further explore the effects of treatment condition (i.e., blending content) and external environment (i.e., precipitation) on the vegetated soil performances. Under a variety of water supply, xanthan gum with a medium blending content of 0.5% (i.e., with respect to dry soil mass) led to the most substantial improvement in the ability to resist shear loading. This indicates that the appropriate dosage of biopolymer used at the initial stage of plant growth, should provide moderate bond strength between soil particles, whilst not impeding root penetration. Supported by the obtained results, biopolymer is suggested to be used in combination with plants for soil reinforcement for the best efficiency.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.