大黏度比分层油水通道湍流与界面波

IF 2 3区 工程技术 Q3 MECHANICS
Georgios Giamagas, Francesco Zonta, Alessio Roccon, Alfredo Soldati
{"title":"大黏度比分层油水通道湍流与界面波","authors":"Georgios Giamagas, Francesco Zonta, Alessio Roccon, Alfredo Soldati","doi":"10.1007/s10494-023-00478-3","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the dynamics of turbulence and interfacial waves in an oil–water channel flow. We consider a stratified configuration, in which a thin layer of oil flows on top of a thick layer of water. The oil–water interface that separates the two layers mutually interacts with the surrounding flow field, and is characterized by the formation and propagation of interfacial waves. We perform direct numerical simulation of the Navier-Stokes equations coupled with a phase field method to describe the interface dynamics. For a given shear Reynolds number, $$Re_\\tau =300$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>300</mml:mn> </mml:mrow> </mml:math> , and Weber number, $$We=0.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>W</mml:mi> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.5</mml:mn> </mml:mrow> </mml:math> , we consider three different types of oils, characterized by different viscosities, and thus different oil-to-water viscosity ratios $$\\mu _r=\\mu _o/\\mu _w$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>o</mml:mi> </mml:msub> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> </mml:mrow> </mml:math> (being $$\\mu _o$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>o</mml:mi> </mml:msub> </mml:math> and $$\\mu _w$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> </mml:math> oil and water viscosities). Starting from a matched viscosity case, $$\\mu _r=1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , we increase the oil-to-water viscosity ratio up to $$\\mu _r=100$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:math> . By increasing $$\\mu _r$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> </mml:math> , we observe significant changes both in turbulence and in the dynamics of the oil–water interface. In particular, the large viscosity of oil controls the flow regime in the thin oil layer, as well as the turbulence activity in the thick water layer, with direct consequences on the overall channel flow rate, which decreases when the oil viscosity is increased. Correspondingly, we observe remarkable changes in the dynamics of waves that propagate at the oil–water interface. In particular, increasing the viscosity ratio from $$\\mu _r=1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> to $$\\mu _r=100$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:math> , waves change from a two-dimensional, nearly-isotropic pattern, to an almost monochromatic one.","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence and Interface Waves in Stratified Oil–Water Channel Flow at Large Viscosity Ratio\",\"authors\":\"Georgios Giamagas, Francesco Zonta, Alessio Roccon, Alfredo Soldati\",\"doi\":\"10.1007/s10494-023-00478-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the dynamics of turbulence and interfacial waves in an oil–water channel flow. We consider a stratified configuration, in which a thin layer of oil flows on top of a thick layer of water. The oil–water interface that separates the two layers mutually interacts with the surrounding flow field, and is characterized by the formation and propagation of interfacial waves. We perform direct numerical simulation of the Navier-Stokes equations coupled with a phase field method to describe the interface dynamics. For a given shear Reynolds number, $$Re_\\\\tau =300$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>300</mml:mn> </mml:mrow> </mml:math> , and Weber number, $$We=0.5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>W</mml:mi> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.5</mml:mn> </mml:mrow> </mml:math> , we consider three different types of oils, characterized by different viscosities, and thus different oil-to-water viscosity ratios $$\\\\mu _r=\\\\mu _o/\\\\mu _w$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>o</mml:mi> </mml:msub> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> </mml:mrow> </mml:math> (being $$\\\\mu _o$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>o</mml:mi> </mml:msub> </mml:math> and $$\\\\mu _w$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>w</mml:mi> </mml:msub> </mml:math> oil and water viscosities). Starting from a matched viscosity case, $$\\\\mu _r=1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , we increase the oil-to-water viscosity ratio up to $$\\\\mu _r=100$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:math> . By increasing $$\\\\mu _r$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> </mml:math> , we observe significant changes both in turbulence and in the dynamics of the oil–water interface. In particular, the large viscosity of oil controls the flow regime in the thin oil layer, as well as the turbulence activity in the thick water layer, with direct consequences on the overall channel flow rate, which decreases when the oil viscosity is increased. Correspondingly, we observe remarkable changes in the dynamics of waves that propagate at the oil–water interface. In particular, increasing the viscosity ratio from $$\\\\mu _r=1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> to $$\\\\mu _r=100$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:math> , waves change from a two-dimensional, nearly-isotropic pattern, to an almost monochromatic one.\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10494-023-00478-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10494-023-00478-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了油水通道流动中的湍流和界面波动力学。我们考虑一个分层结构,其中一层薄薄的油流在一层厚厚的水上面。分隔两层的油水界面与周围流场相互作用,其特征是界面波的形成和传播。本文采用相场法对Navier-Stokes方程进行了直接数值模拟来描述界面动力学。对于给定的剪切雷诺数$$Re_\tau =300$$ Re τ = 300和韦伯数$$We=0.5$$ We = 0.5,我们考虑了三种不同类型的油,它们具有不同的粘度,因此油水粘度比$$\mu _r=\mu _o/\mu _w$$ μ R = μ o / μ W(分别为$$\mu _o$$ μ o和$$\mu _w$$ μ W)。从匹配粘度情况$$\mu _r=1$$ μ r = 1开始,我们将油水粘度比提高到$$\mu _r=100$$ μ r = 100。通过增大$$\mu _r$$ μ r,我们观察到湍流和油水界面动力学的显著变化。特别是,油的大粘度控制了薄油层的流动状态,以及厚水层的湍流活动,直接影响了通道的总流速,当油的粘度增加时,通道的总流速会降低。相应地,我们观察到在油水界面传播的波的动力学发生了显著变化。特别是当黏度比从$$\mu _r=1$$ μ r = 1增加到$$\mu _r=100$$ μ r = 100时,波从二维的几乎各向同性的模式转变为几乎单色的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turbulence and Interface Waves in Stratified Oil–Water Channel Flow at Large Viscosity Ratio

Turbulence and Interface Waves in Stratified Oil–Water Channel Flow at Large Viscosity Ratio
Abstract We investigate the dynamics of turbulence and interfacial waves in an oil–water channel flow. We consider a stratified configuration, in which a thin layer of oil flows on top of a thick layer of water. The oil–water interface that separates the two layers mutually interacts with the surrounding flow field, and is characterized by the formation and propagation of interfacial waves. We perform direct numerical simulation of the Navier-Stokes equations coupled with a phase field method to describe the interface dynamics. For a given shear Reynolds number, $$Re_\tau =300$$ R e τ = 300 , and Weber number, $$We=0.5$$ W e = 0.5 , we consider three different types of oils, characterized by different viscosities, and thus different oil-to-water viscosity ratios $$\mu _r=\mu _o/\mu _w$$ μ r = μ o / μ w (being $$\mu _o$$ μ o and $$\mu _w$$ μ w oil and water viscosities). Starting from a matched viscosity case, $$\mu _r=1$$ μ r = 1 , we increase the oil-to-water viscosity ratio up to $$\mu _r=100$$ μ r = 100 . By increasing $$\mu _r$$ μ r , we observe significant changes both in turbulence and in the dynamics of the oil–water interface. In particular, the large viscosity of oil controls the flow regime in the thin oil layer, as well as the turbulence activity in the thick water layer, with direct consequences on the overall channel flow rate, which decreases when the oil viscosity is increased. Correspondingly, we observe remarkable changes in the dynamics of waves that propagate at the oil–water interface. In particular, increasing the viscosity ratio from $$\mu _r=1$$ μ r = 1 to $$\mu _r=100$$ μ r = 100 , waves change from a two-dimensional, nearly-isotropic pattern, to an almost monochromatic one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信