黎曼流形上调和函数的水平集族的几何表征

IF 0.7 Q2 MATHEMATICS
Cunda Lin
{"title":"黎曼流形上调和函数的水平集族的几何表征","authors":"Cunda Lin","doi":"10.1007/s41478-023-00651-x","DOIUrl":null,"url":null,"abstract":"Abstract In (Bivens in Mathematics Magazine 65: 226–235, 1992), it is shown that the appearance of the curves completely determines whether a family of curves in the Euclidean plane is a family of level curves of some harmonic function free of critical points. In this paper, we extend the result of (Bivens in Mathematics Magazine 65: 226–235, 1992) to higher dimensional Riemannian manifolds and give a geometric characterization of the level set family of the solutions of the differential equation $$\\vert {\\text {grad}}\\;u \\vert ^{-1}\\varDelta u=\\psi$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mtext>grad</mml:mtext> <mml:mspace /> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>ψ</mml:mi> </mml:mrow> </mml:math> , where $$\\psi$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ψ</mml:mi> </mml:math> is a smooth function on the manifold.","PeriodicalId":36029,"journal":{"name":"Journal of Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric characterization of level set families of harmonic functions on Riemannian manifolds\",\"authors\":\"Cunda Lin\",\"doi\":\"10.1007/s41478-023-00651-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In (Bivens in Mathematics Magazine 65: 226–235, 1992), it is shown that the appearance of the curves completely determines whether a family of curves in the Euclidean plane is a family of level curves of some harmonic function free of critical points. In this paper, we extend the result of (Bivens in Mathematics Magazine 65: 226–235, 1992) to higher dimensional Riemannian manifolds and give a geometric characterization of the level set family of the solutions of the differential equation $$\\\\vert {\\\\text {grad}}\\\\;u \\\\vert ^{-1}\\\\varDelta u=\\\\psi$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mtext>grad</mml:mtext> <mml:mspace /> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>ψ</mml:mi> </mml:mrow> </mml:math> , where $$\\\\psi$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ψ</mml:mi> </mml:math> is a smooth function on the manifold.\",\"PeriodicalId\":36029,\"journal\":{\"name\":\"Journal of Analysis\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41478-023-00651-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41478-023-00651-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在(Bivens In Mathematics Magazine 65: 226-235, 1992)中,证明了曲线的外观完全决定了欧几里得平面上的一组曲线是否为无临界点的调和函数的一组水平曲线。本文将(Bivens在数学杂志65:226-235,1992)的结果推广到高维黎曼流形,并给出微分方程$$\vert {\text {grad}}\;u \vert ^{-1}\varDelta u=\psi$$ | grad u | - 1 Δ u = ψ解的水平集族的几何表征,其中$$\psi$$ ψ是流形上的光滑函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric characterization of level set families of harmonic functions on Riemannian manifolds
Abstract In (Bivens in Mathematics Magazine 65: 226–235, 1992), it is shown that the appearance of the curves completely determines whether a family of curves in the Euclidean plane is a family of level curves of some harmonic function free of critical points. In this paper, we extend the result of (Bivens in Mathematics Magazine 65: 226–235, 1992) to higher dimensional Riemannian manifolds and give a geometric characterization of the level set family of the solutions of the differential equation $$\vert {\text {grad}}\;u \vert ^{-1}\varDelta u=\psi$$ | grad u | - 1 Δ u = ψ , where $$\psi$$ ψ is a smooth function on the manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Analysis
Journal of Analysis Mathematics-Algebra and Number Theory
CiteScore
1.50
自引率
25.00%
发文量
151
期刊介绍: All submitted manuscripts are subject to initial appraisal by the editorial board/assigned editor. If found suitable for further consideration, papers will be sent for peer-review.  Selection for publication is on the basis of the report(s) from the referee(s) assigned by the editor(s). Papers dealing with applications of mathematical analysis will be limited to those that contain a signi?cant treatment of mathematics and not routine applications of mathematical analysis. All e?ort will be made to process papers e?ciently within a minimal amount of time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信