条件随机化和排列方案的分析及其在条件独立性检验中的应用

test Pub Date : 2023-09-12 DOI:10.1007/s11749-023-00878-7
Małgorzata Łazȩcka, Bartosz Kołodziejek, Jan Mielniczuk
{"title":"条件随机化和排列方案的分析及其在条件独立性检验中的应用","authors":"Małgorzata Łazȩcka, Bartosz Kołodziejek, Jan Mielniczuk","doi":"10.1007/s11749-023-00878-7","DOIUrl":null,"url":null,"abstract":"Abstract We study properties of two resampling scenarios: Conditional Randomisation and Conditional Permutation schemes, which are relevant for testing conditional independence of discrete random variables X and Y given a random variable Z . Namely, we investigate asymptotic behaviour of estimates of a vector of probabilities in such settings, establish their asymptotic normality and ordering between asymptotic covariance matrices. The results are used to derive asymptotic distributions of the empirical Conditional Mutual Information in those set-ups. Somewhat unexpectedly, the distributions coincide for the two scenarios, despite differences in the asymptotic distributions of the estimates of probabilities. We also prove validity of permutation p -values for the Conditional Permutation scheme. The above results justify consideration of conditional independence tests based on resampled p -values and on the asymptotic chi-square distribution with an adjusted number of degrees of freedom. We show in numerical experiments that when the ratio of the sample size to the number of possible values of the triple exceeds 0.5, the test based on the asymptotic distribution with the adjustment made on a limited number of permutations is a viable alternative to the exact test for both the Conditional Permutation and the Conditional Randomisation scenarios. Moreover, there is no significant difference between the performance of exact tests for Conditional Permutation and Randomisation schemes, the latter requiring knowledge of conditional distribution of X given Z , and the same conclusion is true for both adaptive tests.","PeriodicalId":101465,"journal":{"name":"test","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of conditional randomisation and permutation schemes with application to conditional independence testing\",\"authors\":\"Małgorzata Łazȩcka, Bartosz Kołodziejek, Jan Mielniczuk\",\"doi\":\"10.1007/s11749-023-00878-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study properties of two resampling scenarios: Conditional Randomisation and Conditional Permutation schemes, which are relevant for testing conditional independence of discrete random variables X and Y given a random variable Z . Namely, we investigate asymptotic behaviour of estimates of a vector of probabilities in such settings, establish their asymptotic normality and ordering between asymptotic covariance matrices. The results are used to derive asymptotic distributions of the empirical Conditional Mutual Information in those set-ups. Somewhat unexpectedly, the distributions coincide for the two scenarios, despite differences in the asymptotic distributions of the estimates of probabilities. We also prove validity of permutation p -values for the Conditional Permutation scheme. The above results justify consideration of conditional independence tests based on resampled p -values and on the asymptotic chi-square distribution with an adjusted number of degrees of freedom. We show in numerical experiments that when the ratio of the sample size to the number of possible values of the triple exceeds 0.5, the test based on the asymptotic distribution with the adjustment made on a limited number of permutations is a viable alternative to the exact test for both the Conditional Permutation and the Conditional Randomisation scenarios. Moreover, there is no significant difference between the performance of exact tests for Conditional Permutation and Randomisation schemes, the latter requiring knowledge of conditional distribution of X given Z , and the same conclusion is true for both adaptive tests.\",\"PeriodicalId\":101465,\"journal\":{\"name\":\"test\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11749-023-00878-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11749-023-00878-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了两种重采样方案的性质:条件随机化和条件置换方案,这两种方案与测试给定随机变量Z的离散随机变量X和Y的条件独立性有关。也就是说,我们研究了在这种情况下概率向量估计的渐近行为,建立了它们的渐近正态性和渐近协方差矩阵之间的排序。这些结果被用来推导这些设置中经验条件互信息的渐近分布。出乎意料的是,尽管概率估计的渐近分布不同,但这两种情况的分布是一致的。我们还证明了条件置换方案的置换p值的有效性。上述结果证明考虑基于重采样的p值和具有调整自由度数的渐近卡方分布的条件独立性检验是合理的。我们在数值实验中表明,当样本大小与三组可能值的数量之比超过0.5时,基于对有限数量排列进行调整的渐近分布的测试是对条件排列和条件随机化场景的精确测试的可行替代方案。此外,条件置换和随机化方案的精确测试的性能之间没有显着差异,随机化方案需要了解给定Z的X的条件分布,同样的结论适用于两种自适应测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of conditional randomisation and permutation schemes with application to conditional independence testing

Analysis of conditional randomisation and permutation schemes with application to conditional independence testing
Abstract We study properties of two resampling scenarios: Conditional Randomisation and Conditional Permutation schemes, which are relevant for testing conditional independence of discrete random variables X and Y given a random variable Z . Namely, we investigate asymptotic behaviour of estimates of a vector of probabilities in such settings, establish their asymptotic normality and ordering between asymptotic covariance matrices. The results are used to derive asymptotic distributions of the empirical Conditional Mutual Information in those set-ups. Somewhat unexpectedly, the distributions coincide for the two scenarios, despite differences in the asymptotic distributions of the estimates of probabilities. We also prove validity of permutation p -values for the Conditional Permutation scheme. The above results justify consideration of conditional independence tests based on resampled p -values and on the asymptotic chi-square distribution with an adjusted number of degrees of freedom. We show in numerical experiments that when the ratio of the sample size to the number of possible values of the triple exceeds 0.5, the test based on the asymptotic distribution with the adjustment made on a limited number of permutations is a viable alternative to the exact test for both the Conditional Permutation and the Conditional Randomisation scenarios. Moreover, there is no significant difference between the performance of exact tests for Conditional Permutation and Randomisation schemes, the latter requiring knowledge of conditional distribution of X given Z , and the same conclusion is true for both adaptive tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信