搅拌摩擦增材制造中组织-性能-变形关系的集成建模

IF 2.6 3区 工程技术 Q2 MECHANICS
Zhao Zhang, Yifei Wang, Zhijun Tan, Daxin Ren
{"title":"搅拌摩擦增材制造中组织-性能-变形关系的集成建模","authors":"Zhao Zhang, Yifei Wang, Zhijun Tan, Daxin Ren","doi":"10.1080/01495739.2023.2256804","DOIUrl":null,"url":null,"abstract":"Abstract A Monte Carlo model is established to simulate grain morphologies and combined with a precipitate evolution model to predict the mechanical properties of different zones in different layers of friction stir additive manufacturing (FSAM). Subsequently, a subregion model is established by considering the different mechanical properties at different locations to predict the residual states in FSAM. Results indicate that equiaxed grains are formed in the stirring zone and that the average grain size can be decreased by increasing the build height. The yield strengths in the stirring and heat-affected zones increase along the build direction and decrease with increasing temperature. The error between the predicted and experimental yield strengths is 3.3%. By considering changes in the mechanical properties in the stirring and heat-affected zones, the distortion error between the experimental test and numerical model can be reduced by 25% compared with that between the experimental test and the conventional model. The predicted residual stresses can be reduced by considering the strength reduction caused by the friction stirring effect. As the number of built layers increases, the maximum distortion in FSAM increases.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated modeling of microstructure-property-distortion relationship in friction stir additive manufacturing\",\"authors\":\"Zhao Zhang, Yifei Wang, Zhijun Tan, Daxin Ren\",\"doi\":\"10.1080/01495739.2023.2256804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Monte Carlo model is established to simulate grain morphologies and combined with a precipitate evolution model to predict the mechanical properties of different zones in different layers of friction stir additive manufacturing (FSAM). Subsequently, a subregion model is established by considering the different mechanical properties at different locations to predict the residual states in FSAM. Results indicate that equiaxed grains are formed in the stirring zone and that the average grain size can be decreased by increasing the build height. The yield strengths in the stirring and heat-affected zones increase along the build direction and decrease with increasing temperature. The error between the predicted and experimental yield strengths is 3.3%. By considering changes in the mechanical properties in the stirring and heat-affected zones, the distortion error between the experimental test and numerical model can be reduced by 25% compared with that between the experimental test and the conventional model. The predicted residual stresses can be reduced by considering the strength reduction caused by the friction stirring effect. As the number of built layers increases, the maximum distortion in FSAM increases.\",\"PeriodicalId\":54759,\"journal\":{\"name\":\"Journal of Thermal Stresses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Stresses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495739.2023.2256804\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2256804","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated modeling of microstructure-property-distortion relationship in friction stir additive manufacturing
Abstract A Monte Carlo model is established to simulate grain morphologies and combined with a precipitate evolution model to predict the mechanical properties of different zones in different layers of friction stir additive manufacturing (FSAM). Subsequently, a subregion model is established by considering the different mechanical properties at different locations to predict the residual states in FSAM. Results indicate that equiaxed grains are formed in the stirring zone and that the average grain size can be decreased by increasing the build height. The yield strengths in the stirring and heat-affected zones increase along the build direction and decrease with increasing temperature. The error between the predicted and experimental yield strengths is 3.3%. By considering changes in the mechanical properties in the stirring and heat-affected zones, the distortion error between the experimental test and numerical model can be reduced by 25% compared with that between the experimental test and the conventional model. The predicted residual stresses can be reduced by considering the strength reduction caused by the friction stirring effect. As the number of built layers increases, the maximum distortion in FSAM increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Stresses
Journal of Thermal Stresses 工程技术-力学
CiteScore
5.20
自引率
7.10%
发文量
58
审稿时长
3 months
期刊介绍: The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信