{"title":"维迪尔二象性成立的偏序集","authors":"Ko Aoki","doi":"10.1007/s00029-023-00887-2","DOIUrl":null,"url":null,"abstract":"Abstract We discuss two known sheaf-cosheaf duality theorems: Curry’s for the face posets of finite regular CW complexes and Lurie’s for compact Hausdorff spaces, i.e., covariant Verdier duality. We provide a uniform formulation for them and prove their generalizations. Our version of the former works over the sphere spectrum and for more general finite posets, which we characterize in terms of the Gorenstein* condition. Our version of the latter says that the stabilization of a proper separated $$\\infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>∞</mml:mi> </mml:math> -topos is rigid in the sense of Gaitsgory. As an application, for stratified topological spaces, we clarify the relation between these two duality equivalences.","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"26 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Posets for which Verdier duality holds\",\"authors\":\"Ko Aoki\",\"doi\":\"10.1007/s00029-023-00887-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We discuss two known sheaf-cosheaf duality theorems: Curry’s for the face posets of finite regular CW complexes and Lurie’s for compact Hausdorff spaces, i.e., covariant Verdier duality. We provide a uniform formulation for them and prove their generalizations. Our version of the former works over the sphere spectrum and for more general finite posets, which we characterize in terms of the Gorenstein* condition. Our version of the latter says that the stabilization of a proper separated $$\\\\infty $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>∞</mml:mi> </mml:math> -topos is rigid in the sense of Gaitsgory. As an application, for stratified topological spaces, we clarify the relation between these two duality equivalences.\",\"PeriodicalId\":49551,\"journal\":{\"name\":\"Selecta Mathematica-New Series\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica-New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00887-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00887-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We discuss two known sheaf-cosheaf duality theorems: Curry’s for the face posets of finite regular CW complexes and Lurie’s for compact Hausdorff spaces, i.e., covariant Verdier duality. We provide a uniform formulation for them and prove their generalizations. Our version of the former works over the sphere spectrum and for more general finite posets, which we characterize in terms of the Gorenstein* condition. Our version of the latter says that the stabilization of a proper separated $$\infty $$ ∞ -topos is rigid in the sense of Gaitsgory. As an application, for stratified topological spaces, we clarify the relation between these two duality equivalences.
期刊介绍:
Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.