{"title":"不同堆叠顺序对复合材料包覆压力容器低速冲击的数值与实验研究","authors":"Musthafa Akbar, Satoshi Kobayashi","doi":"10.1080/09243046.2023.2269743","DOIUrl":null,"url":null,"abstract":"AbstractComposite overwrapped pressure vessels are designed to contain fluids that operate under high pressures. In addition to internal pressure, the design needs to account for out-of-plane loading in the form of low-velocity impact. In this study, a numerical analysis of four models of composite overwrapped pressure vessels with different stacking sequences is performed. A three-dimensional explicit finite element model using multi-layer stacked shell elements was used in the impact zone region to obtain reasonable computation time. Utilizing the bilinear traction-separation law, cohesive zone elements were used to simulate the delamination failure and as bonding between eight layers of CFRP covering the aluminum liner. The simulation results were then validated using drop-weight impact tests, which revealed that the response of contact force to impact time was comparable for both types of analysis. Prediction of failure was carried out by assessing the quantity of energy absorbed by the CFRP layers and was confirmed by shell element data that failed during simulations. In addition, the Hashin damage model confirmed that the matrix tensile failure mode was the predominant failure mode for all discussed impact scenarios. Model-A with Al + [90]8 stacking sequence was found to have the highest impact resistance based on the prediction of the composite’s failure area and the energy absorbed by the CFRP layers. Furthermore, it was found that COPVs with combinations of helical and hoop sequences tend to have larger areas of delamination due to high interlaminar shear stress between the CFRP layers.Keywords: low-velocity impactcohesive zone elements;Hashin damage model impact energy absorption Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":"1 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental investigations of low-velocity impact on composite overwrapped pressure vessel with different stacking sequences\",\"authors\":\"Musthafa Akbar, Satoshi Kobayashi\",\"doi\":\"10.1080/09243046.2023.2269743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractComposite overwrapped pressure vessels are designed to contain fluids that operate under high pressures. In addition to internal pressure, the design needs to account for out-of-plane loading in the form of low-velocity impact. In this study, a numerical analysis of four models of composite overwrapped pressure vessels with different stacking sequences is performed. A three-dimensional explicit finite element model using multi-layer stacked shell elements was used in the impact zone region to obtain reasonable computation time. Utilizing the bilinear traction-separation law, cohesive zone elements were used to simulate the delamination failure and as bonding between eight layers of CFRP covering the aluminum liner. The simulation results were then validated using drop-weight impact tests, which revealed that the response of contact force to impact time was comparable for both types of analysis. Prediction of failure was carried out by assessing the quantity of energy absorbed by the CFRP layers and was confirmed by shell element data that failed during simulations. In addition, the Hashin damage model confirmed that the matrix tensile failure mode was the predominant failure mode for all discussed impact scenarios. Model-A with Al + [90]8 stacking sequence was found to have the highest impact resistance based on the prediction of the composite’s failure area and the energy absorbed by the CFRP layers. Furthermore, it was found that COPVs with combinations of helical and hoop sequences tend to have larger areas of delamination due to high interlaminar shear stress between the CFRP layers.Keywords: low-velocity impactcohesive zone elements;Hashin damage model impact energy absorption Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":7291,\"journal\":{\"name\":\"Advanced Composite Materials\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composite Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09243046.2023.2269743\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09243046.2023.2269743","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Numerical and experimental investigations of low-velocity impact on composite overwrapped pressure vessel with different stacking sequences
AbstractComposite overwrapped pressure vessels are designed to contain fluids that operate under high pressures. In addition to internal pressure, the design needs to account for out-of-plane loading in the form of low-velocity impact. In this study, a numerical analysis of four models of composite overwrapped pressure vessels with different stacking sequences is performed. A three-dimensional explicit finite element model using multi-layer stacked shell elements was used in the impact zone region to obtain reasonable computation time. Utilizing the bilinear traction-separation law, cohesive zone elements were used to simulate the delamination failure and as bonding between eight layers of CFRP covering the aluminum liner. The simulation results were then validated using drop-weight impact tests, which revealed that the response of contact force to impact time was comparable for both types of analysis. Prediction of failure was carried out by assessing the quantity of energy absorbed by the CFRP layers and was confirmed by shell element data that failed during simulations. In addition, the Hashin damage model confirmed that the matrix tensile failure mode was the predominant failure mode for all discussed impact scenarios. Model-A with Al + [90]8 stacking sequence was found to have the highest impact resistance based on the prediction of the composite’s failure area and the energy absorbed by the CFRP layers. Furthermore, it was found that COPVs with combinations of helical and hoop sequences tend to have larger areas of delamination due to high interlaminar shear stress between the CFRP layers.Keywords: low-velocity impactcohesive zone elements;Hashin damage model impact energy absorption Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
"Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications.
Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."