Jianghui Ji, Dongjie Tan, Chunhui Bao, Xiumin Huang, Shoucun HU, Yao Dong, Su Wang
{"title":"基础天文学标准(SOFA)服务的Python包","authors":"Jianghui Ji, Dongjie Tan, Chunhui Bao, Xiumin Huang, Shoucun HU, Yao Dong, Su Wang","doi":"10.1088/1674-4527/ad0499","DOIUrl":null,"url":null,"abstract":"Abstract The Standards of Fundamental Astronomy (SOFA) is a service provided by the International Astronomical Union (IAU) that offers algorithms and software for astronomical calculations, which was released in two versions by FORTRAN 77 and ANSI C, respectively. \\textbf{In this work, we implement the python package PyMsOfa for SOFA service by three ways: (1) a python wrapper package based on a foreign function library for Python (ctypes), (2) a python wrapper package with the foreign function interface for Python calling C code (cffi), and (3) a python package directly written in pure python codes from SOFA subroutines.} The package PyMsOfa has fully implemented 247 functions of the original SOFA routines. In addition, PyMsOfa is also extensively examined, which is exactly consistent with those test examples given by the original SOFA. This python package can be suitable to not only the astrometric detection of habitable planets of the Closeby Habitable Exoplanet Survey (CHES) mission \\citep{ji2022ches}, but also for the frontiers themes of black holes and dark matter related to astrometric calculations and other fields. The source codes are available via https://github.com/CHES2023/PyMsOfa.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"30 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyMsOfa: A Python Package for the Standards of Fundamental Astronomy (SOFA) Service\",\"authors\":\"Jianghui Ji, Dongjie Tan, Chunhui Bao, Xiumin Huang, Shoucun HU, Yao Dong, Su Wang\",\"doi\":\"10.1088/1674-4527/ad0499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Standards of Fundamental Astronomy (SOFA) is a service provided by the International Astronomical Union (IAU) that offers algorithms and software for astronomical calculations, which was released in two versions by FORTRAN 77 and ANSI C, respectively. \\\\textbf{In this work, we implement the python package PyMsOfa for SOFA service by three ways: (1) a python wrapper package based on a foreign function library for Python (ctypes), (2) a python wrapper package with the foreign function interface for Python calling C code (cffi), and (3) a python package directly written in pure python codes from SOFA subroutines.} The package PyMsOfa has fully implemented 247 functions of the original SOFA routines. In addition, PyMsOfa is also extensively examined, which is exactly consistent with those test examples given by the original SOFA. This python package can be suitable to not only the astrometric detection of habitable planets of the Closeby Habitable Exoplanet Survey (CHES) mission \\\\citep{ji2022ches}, but also for the frontiers themes of black holes and dark matter related to astrometric calculations and other fields. The source codes are available via https://github.com/CHES2023/PyMsOfa.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad0499\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad0499","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
PyMsOfa: A Python Package for the Standards of Fundamental Astronomy (SOFA) Service
Abstract The Standards of Fundamental Astronomy (SOFA) is a service provided by the International Astronomical Union (IAU) that offers algorithms and software for astronomical calculations, which was released in two versions by FORTRAN 77 and ANSI C, respectively. \textbf{In this work, we implement the python package PyMsOfa for SOFA service by three ways: (1) a python wrapper package based on a foreign function library for Python (ctypes), (2) a python wrapper package with the foreign function interface for Python calling C code (cffi), and (3) a python package directly written in pure python codes from SOFA subroutines.} The package PyMsOfa has fully implemented 247 functions of the original SOFA routines. In addition, PyMsOfa is also extensively examined, which is exactly consistent with those test examples given by the original SOFA. This python package can be suitable to not only the astrometric detection of habitable planets of the Closeby Habitable Exoplanet Survey (CHES) mission \citep{ji2022ches}, but also for the frontiers themes of black holes and dark matter related to astrometric calculations and other fields. The source codes are available via https://github.com/CHES2023/PyMsOfa.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods