{"title":"基于PFC-FLAC耦合的大豆颗粒材料三轴试验数值模拟","authors":"Hang Jing, Xu Guo, Pengfei Yang","doi":"10.1080/02726351.2023.2267492","DOIUrl":null,"url":null,"abstract":"AbstractA discrete-continuous (PFC–FLAC) coupling method was used in this study to simulate laboratory triaxial tests with soybean granular material. The mesoscopic mechanical parameters of the soybean granular material were calibrated by comparing them with actual laboratory test results, and the validity of the modeling method was verified. Subsequently, the particle motion law and mechanical mechanism of the soybean granular materials were analyzed based on the particle displacement field, velocity field, and force chain network. The results showed that the coupled PFC–FLAC method could better describe the macroscopic stress–strain relationship, deformation damage characteristics, and shear strength mechanical indexes of soybean granular materials. With increasing confining pressure (50–200 kPa), the bulging deformation of the specimens changed from uniform to concentrated but uneven. The particle contact number and maximum particle contact stress increased by 19.3 and 48%, respectively. Additionally, variations of the macroscopic properties of the specimens with microscopic parameters were revealed. Under the same conditions, the change in the peak stress of the specimen was proportional to the interparticle friction coefficient. Moreover, the slope of the stress–strain curve increased gradually with an increase in the effective modulus.Keywords: Discrete element methodPFC–FLAC couplingsoybean granular materialtriaxial compressionnumerical simulation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the [Training Program for Young Backbone Teachers in Higher Education Institutions in Henan Province] under Grant [Number 2020GGJS086]; and [Henan Province Higher Education Key Research Project Plan] under Grant [Number 23A560001].","PeriodicalId":19742,"journal":{"name":"Particulate Science and Technology","volume":"17 4 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PFC–FLAC coupling-based numerical simulation of triaxial test on soybean granular material\",\"authors\":\"Hang Jing, Xu Guo, Pengfei Yang\",\"doi\":\"10.1080/02726351.2023.2267492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA discrete-continuous (PFC–FLAC) coupling method was used in this study to simulate laboratory triaxial tests with soybean granular material. The mesoscopic mechanical parameters of the soybean granular material were calibrated by comparing them with actual laboratory test results, and the validity of the modeling method was verified. Subsequently, the particle motion law and mechanical mechanism of the soybean granular materials were analyzed based on the particle displacement field, velocity field, and force chain network. The results showed that the coupled PFC–FLAC method could better describe the macroscopic stress–strain relationship, deformation damage characteristics, and shear strength mechanical indexes of soybean granular materials. With increasing confining pressure (50–200 kPa), the bulging deformation of the specimens changed from uniform to concentrated but uneven. The particle contact number and maximum particle contact stress increased by 19.3 and 48%, respectively. Additionally, variations of the macroscopic properties of the specimens with microscopic parameters were revealed. Under the same conditions, the change in the peak stress of the specimen was proportional to the interparticle friction coefficient. Moreover, the slope of the stress–strain curve increased gradually with an increase in the effective modulus.Keywords: Discrete element methodPFC–FLAC couplingsoybean granular materialtriaxial compressionnumerical simulation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the [Training Program for Young Backbone Teachers in Higher Education Institutions in Henan Province] under Grant [Number 2020GGJS086]; and [Henan Province Higher Education Key Research Project Plan] under Grant [Number 23A560001].\",\"PeriodicalId\":19742,\"journal\":{\"name\":\"Particulate Science and Technology\",\"volume\":\"17 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particulate Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02726351.2023.2267492\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particulate Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02726351.2023.2267492","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
PFC–FLAC coupling-based numerical simulation of triaxial test on soybean granular material
AbstractA discrete-continuous (PFC–FLAC) coupling method was used in this study to simulate laboratory triaxial tests with soybean granular material. The mesoscopic mechanical parameters of the soybean granular material were calibrated by comparing them with actual laboratory test results, and the validity of the modeling method was verified. Subsequently, the particle motion law and mechanical mechanism of the soybean granular materials were analyzed based on the particle displacement field, velocity field, and force chain network. The results showed that the coupled PFC–FLAC method could better describe the macroscopic stress–strain relationship, deformation damage characteristics, and shear strength mechanical indexes of soybean granular materials. With increasing confining pressure (50–200 kPa), the bulging deformation of the specimens changed from uniform to concentrated but uneven. The particle contact number and maximum particle contact stress increased by 19.3 and 48%, respectively. Additionally, variations of the macroscopic properties of the specimens with microscopic parameters were revealed. Under the same conditions, the change in the peak stress of the specimen was proportional to the interparticle friction coefficient. Moreover, the slope of the stress–strain curve increased gradually with an increase in the effective modulus.Keywords: Discrete element methodPFC–FLAC couplingsoybean granular materialtriaxial compressionnumerical simulation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the [Training Program for Young Backbone Teachers in Higher Education Institutions in Henan Province] under Grant [Number 2020GGJS086]; and [Henan Province Higher Education Key Research Project Plan] under Grant [Number 23A560001].
期刊介绍:
Particulate Science and Technology, an interdisciplinary journal, publishes papers on both fundamental and applied science and technology related to particles and particle systems in size scales from nanometers to millimeters. The journal''s primary focus is to report emerging technologies and advances in different fields of engineering, energy, biomaterials, and pharmaceutical science involving particles, and to bring institutional researchers closer to professionals in industries.
Particulate Science and Technology invites articles reporting original contributions and review papers, in particular critical reviews, that are relevant and timely to the emerging and growing fields of particle and powder technology.