{"title":"基于深度学习的能耗监测系统负荷预测维数展开算法","authors":"Wei-guo Zhang, Qing Zhu, Lin-Lin Gu, Hui-Jie Lin","doi":"10.1186/s13634-023-01068-1","DOIUrl":null,"url":null,"abstract":"Abstract As a basic task in energy consumption monitoring system, load forecasting has great effects on system operation safety, generation costs and economic benefits. In this paper, a long-term load forecasting algorithm using data dimension expansion and deep feature extraction is proposed. First, the outliers of the meteorological measurements are removed by median filter method, and then the time information is encoded to form the fingerprint of the training data. Next, the full connected network (FCN) is used to expand the dimensions of the fingerprint, and the convolutional neural network (CNN) is used to extract the deep features which can obtain better feature representation. Finally, the FCN, the CNN and regression learning model are combined for jointly offline training. The optimal parameters of these network can be obtained under global solution. Experimental results show that the proposed algorithm has better load forecasting performance than existing methods.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"31 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based load forecasting algorithm for energy consumption monitoring system using dimension expansion\",\"authors\":\"Wei-guo Zhang, Qing Zhu, Lin-Lin Gu, Hui-Jie Lin\",\"doi\":\"10.1186/s13634-023-01068-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As a basic task in energy consumption monitoring system, load forecasting has great effects on system operation safety, generation costs and economic benefits. In this paper, a long-term load forecasting algorithm using data dimension expansion and deep feature extraction is proposed. First, the outliers of the meteorological measurements are removed by median filter method, and then the time information is encoded to form the fingerprint of the training data. Next, the full connected network (FCN) is used to expand the dimensions of the fingerprint, and the convolutional neural network (CNN) is used to extract the deep features which can obtain better feature representation. Finally, the FCN, the CNN and regression learning model are combined for jointly offline training. The optimal parameters of these network can be obtained under global solution. Experimental results show that the proposed algorithm has better load forecasting performance than existing methods.\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01068-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01068-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A deep learning-based load forecasting algorithm for energy consumption monitoring system using dimension expansion
Abstract As a basic task in energy consumption monitoring system, load forecasting has great effects on system operation safety, generation costs and economic benefits. In this paper, a long-term load forecasting algorithm using data dimension expansion and deep feature extraction is proposed. First, the outliers of the meteorological measurements are removed by median filter method, and then the time information is encoded to form the fingerprint of the training data. Next, the full connected network (FCN) is used to expand the dimensions of the fingerprint, and the convolutional neural network (CNN) is used to extract the deep features which can obtain better feature representation. Finally, the FCN, the CNN and regression learning model are combined for jointly offline training. The optimal parameters of these network can be obtained under global solution. Experimental results show that the proposed algorithm has better load forecasting performance than existing methods.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.