循环三次场和四次场的圆角理想格

Q3 Mathematics
Dat T. Tran, Nam H. Le, Ha T. N. Tran
{"title":"循环三次场和四次场的圆角理想格","authors":"Dat T. Tran, Nam H. Le, Ha T. N. Tran","doi":"10.46298/cm.11138","DOIUrl":null,"url":null,"abstract":"In this paper, we find criteria for when cyclic cubic and cyclic quartic fields have well-rounded ideal lattices. We show that every cyclic cubic field has at least one well-rounded ideal. We also prove that there exist families of cyclic quartic fields which have well-rounded ideals and explicitly construct their minimal bases. In addition, for a given prime number $p$, if a cyclic quartic field has a unique prime ideal above $p$, then we provide the necessary and sufficient conditions for that ideal to be well-rounded. Moreover, in cyclic quartic fields, we provide the prime decomposition of all odd prime numbers and construct an explicit integral basis for every prime ideal.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Well-Rounded ideal lattices of cyclic cubic and quartic fields\",\"authors\":\"Dat T. Tran, Nam H. Le, Ha T. N. Tran\",\"doi\":\"10.46298/cm.11138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we find criteria for when cyclic cubic and cyclic quartic fields have well-rounded ideal lattices. We show that every cyclic cubic field has at least one well-rounded ideal. We also prove that there exist families of cyclic quartic fields which have well-rounded ideals and explicitly construct their minimal bases. In addition, for a given prime number $p$, if a cyclic quartic field has a unique prime ideal above $p$, then we provide the necessary and sufficient conditions for that ideal to be well-rounded. Moreover, in cyclic quartic fields, we provide the prime decomposition of all odd prime numbers and construct an explicit integral basis for every prime ideal.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.11138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.11138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了循环三次场和循环四次场具有圆角理想格的判据。我们证明了每一个循环三次场至少有一个圆润理想。我们还证明了存在具有完备理想并明确构造其极小基的循环四次域族。此外,对于给定素数$p$,如果循环四次域在$p$上有唯一的素数理想,则给出了该理想是舍入的充分必要条件。此外,在循环四次域中,我们给出了所有奇素数的素数分解,并构造了每个素数理想的显式积分基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Rounded ideal lattices of cyclic cubic and quartic fields
In this paper, we find criteria for when cyclic cubic and cyclic quartic fields have well-rounded ideal lattices. We show that every cyclic cubic field has at least one well-rounded ideal. We also prove that there exist families of cyclic quartic fields which have well-rounded ideals and explicitly construct their minimal bases. In addition, for a given prime number $p$, if a cyclic quartic field has a unique prime ideal above $p$, then we provide the necessary and sufficient conditions for that ideal to be well-rounded. Moreover, in cyclic quartic fields, we provide the prime decomposition of all odd prime numbers and construct an explicit integral basis for every prime ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信