Mehrdad Kalantar Neyestanaki, Georgiana Dunca, Pontus Jonsson, Michel J. Cervantes
{"title":"将压力-时间法扩展到变截面管道的三维数值模拟","authors":"Mehrdad Kalantar Neyestanaki, Georgiana Dunca, Pontus Jonsson, Michel J. Cervantes","doi":"10.1115/1.4063491","DOIUrl":null,"url":null,"abstract":"Abstract The flowrate in hydraulic turbines can be measured using the pressure-time method specified by the IEC 60041 standard. This method assumes a one-dimensional (1D) flow and is limited to straight pipes with a uniform cross section and specific restrictions on length (L > 10 m) and velocity (U × L > 50 m2 s−1). However, in low-head hydropower plants, the intake typically has a variable cross section and small length, making it challenging to use this method. This paper presents the development of a methodology that extends the applicability of the pressure-time method for variable cross section by using three-dimensional computational fluid dynamics (3D CFD). A combination of 3D CFD and 1D pressure-time methods is employed iteratively to estimate the kinetic energy correction factor. The obtained time-dependent values are then used in the 1D pressure-time method to calculate the flowrate. The new methodology is applied with experiments performed on a test rig with a reducer. The obtained results illustrate the significantly different kinetic energy correction factor obtained than those obtained using constant or quasi-steady assumptions. The proposed methodology changes the mean deviation compared to the reference flowmeter from −0.83% (underestimation of flowrate) to ±0.1%, increasing the method's accuracy.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"25 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the Pressure-Time Method to Pipe with Variable Cross-Section with 3D Numerical Simulations\",\"authors\":\"Mehrdad Kalantar Neyestanaki, Georgiana Dunca, Pontus Jonsson, Michel J. Cervantes\",\"doi\":\"10.1115/1.4063491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The flowrate in hydraulic turbines can be measured using the pressure-time method specified by the IEC 60041 standard. This method assumes a one-dimensional (1D) flow and is limited to straight pipes with a uniform cross section and specific restrictions on length (L > 10 m) and velocity (U × L > 50 m2 s−1). However, in low-head hydropower plants, the intake typically has a variable cross section and small length, making it challenging to use this method. This paper presents the development of a methodology that extends the applicability of the pressure-time method for variable cross section by using three-dimensional computational fluid dynamics (3D CFD). A combination of 3D CFD and 1D pressure-time methods is employed iteratively to estimate the kinetic energy correction factor. The obtained time-dependent values are then used in the 1D pressure-time method to calculate the flowrate. The new methodology is applied with experiments performed on a test rig with a reducer. The obtained results illustrate the significantly different kinetic energy correction factor obtained than those obtained using constant or quasi-steady assumptions. The proposed methodology changes the mean deviation compared to the reference flowmeter from −0.83% (underestimation of flowrate) to ±0.1%, increasing the method's accuracy.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063491\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063491","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
摘要水轮机流量的测量可采用IEC 60041标准规定的压力-时间法。该方法假设一维(1D)流动,并且仅限于具有均匀截面和特定长度限制(L >10 m)和速度(U × L >50m2 (s−1)。然而,在低水头水电站中,进水口通常具有变截面和小长度,这使得该方法的使用具有挑战性。本文提出了一种利用三维计算流体力学(3D CFD)扩展变截面压力-时间法适用性的方法。采用三维CFD和一维压力-时间法相结合的方法,迭代估计了动能校正系数。然后将获得的时间相关值用于一维压力-时间方法来计算流量。并在减速器试验台上进行了实验。得到的结果表明,所得到的动能校正系数与使用恒定或准稳态假设得到的校正系数有显著不同。所提出的方法将与参考流量计相比的平均偏差从- 0.83%(流量低估)改变为±0.1%,提高了方法的精度。
Extending the Pressure-Time Method to Pipe with Variable Cross-Section with 3D Numerical Simulations
Abstract The flowrate in hydraulic turbines can be measured using the pressure-time method specified by the IEC 60041 standard. This method assumes a one-dimensional (1D) flow and is limited to straight pipes with a uniform cross section and specific restrictions on length (L > 10 m) and velocity (U × L > 50 m2 s−1). However, in low-head hydropower plants, the intake typically has a variable cross section and small length, making it challenging to use this method. This paper presents the development of a methodology that extends the applicability of the pressure-time method for variable cross section by using three-dimensional computational fluid dynamics (3D CFD). A combination of 3D CFD and 1D pressure-time methods is employed iteratively to estimate the kinetic energy correction factor. The obtained time-dependent values are then used in the 1D pressure-time method to calculate the flowrate. The new methodology is applied with experiments performed on a test rig with a reducer. The obtained results illustrate the significantly different kinetic energy correction factor obtained than those obtained using constant or quasi-steady assumptions. The proposed methodology changes the mean deviation compared to the reference flowmeter from −0.83% (underestimation of flowrate) to ±0.1%, increasing the method's accuracy.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes