磁流变液作用下的纹理球杂化滑动轴承性能分析

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Adesh Kumar Tomar, Satish Chandra Sharma, Krishnkant Sahu
{"title":"磁流变液作用下的纹理球杂化滑动轴承性能分析","authors":"Adesh Kumar Tomar, Satish Chandra Sharma, Krishnkant Sahu","doi":"10.1115/1.4063495","DOIUrl":null,"url":null,"abstract":"Abstract Recently, textured surfaces have been used to enhance the performance of tribological systems. This paper examines the effect of textured surfaces on hole-entry spherical hybrid journal bearings operated using magnetorheological (MR) fluid. The different geometric shapes of textured surfaces, including spherical, rectangular, and conical, have been selected for numerical analysis. Next-generation design for tribological systems based on MR fluid lubrication emphasizes dynamic performance. MR fluid responds quickly, and its rheological characteristics can be simply adjusted. The present paper also deals with the non-Newtonian behavior of MR fluid on the bearing performance characteristics parameters. The finite element method is used to solve the modified Reynolds equation. The findings of numerical simulation show that the application of textured surfaces and MR fluid improves the values of minimum fluid film thickness and stability of the bearing.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":"24 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance analysis of textured spherical hybrid journal bearings operated with magneto-rheological fluid\",\"authors\":\"Adesh Kumar Tomar, Satish Chandra Sharma, Krishnkant Sahu\",\"doi\":\"10.1115/1.4063495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, textured surfaces have been used to enhance the performance of tribological systems. This paper examines the effect of textured surfaces on hole-entry spherical hybrid journal bearings operated using magnetorheological (MR) fluid. The different geometric shapes of textured surfaces, including spherical, rectangular, and conical, have been selected for numerical analysis. Next-generation design for tribological systems based on MR fluid lubrication emphasizes dynamic performance. MR fluid responds quickly, and its rheological characteristics can be simply adjusted. The present paper also deals with the non-Newtonian behavior of MR fluid on the bearing performance characteristics parameters. The finite element method is used to solve the modified Reynolds equation. The findings of numerical simulation show that the application of textured surfaces and MR fluid improves the values of minimum fluid film thickness and stability of the bearing.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063495\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063495","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要近年来,织构表面已被用于提高摩擦学系统的性能。本文研究了纹理表面对使用磁流变(MR)流体操作的孔入口球面混合滑动轴承的影响。不同几何形状的纹理表面,包括球面,矩形和锥形,已经选择了数值分析。基于磁流变液润滑的下一代摩擦学系统设计强调动态性能。磁流变液反应迅速,其流变特性可以简单地调整。本文还讨论了磁流变液的非牛顿行为对轴承性能特征参数的影响。采用有限元法求解修正后的雷诺方程。数值模拟结果表明,纹理表面和磁流变液的应用提高了轴承的最小液膜厚度值和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of textured spherical hybrid journal bearings operated with magneto-rheological fluid
Abstract Recently, textured surfaces have been used to enhance the performance of tribological systems. This paper examines the effect of textured surfaces on hole-entry spherical hybrid journal bearings operated using magnetorheological (MR) fluid. The different geometric shapes of textured surfaces, including spherical, rectangular, and conical, have been selected for numerical analysis. Next-generation design for tribological systems based on MR fluid lubrication emphasizes dynamic performance. MR fluid responds quickly, and its rheological characteristics can be simply adjusted. The present paper also deals with the non-Newtonian behavior of MR fluid on the bearing performance characteristics parameters. The finite element method is used to solve the modified Reynolds equation. The findings of numerical simulation show that the application of textured surfaces and MR fluid improves the values of minimum fluid film thickness and stability of the bearing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Tribology-transactions of The Asme
Journal of Tribology-transactions of The Asme 工程技术-工程:机械
CiteScore
4.20
自引率
12.00%
发文量
117
审稿时长
4.1 months
期刊介绍: The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes. Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信