Seyyed Ali Sadat, Nicholas Vandewetering, Joshua Pearce
{"title":"对传统铝制光伏组件框架、带侧孔的框架和开源的非传统机架下固定框架进行力学和经济分析","authors":"Seyyed Ali Sadat, Nicholas Vandewetering, Joshua Pearce","doi":"10.1115/1.4063493","DOIUrl":null,"url":null,"abstract":"Abstract Using bolts through the back of a solar photovoltaic (PV) module frames to attach them to racking is time consuming and awkward, so commercial PV installations use clamping technologies on the front. Conventional and proprietary clamps are costly and demand access to supply chains for uncommon mechanical components that limit deployment velocity. To overcome these challenges, this study presents new open-source downward-fastened and side-fastened aluminum (Al) framing designs, which are easy to install and compatible with metal and wood racks. The proposed parametric open-source designs are analyzed through finite element method (FEM) simulations and economic analysis is performed to compare to conventional PV frame at both the module and system levels. The FEM results showed all the frames have acceptable mechanical reliability and stability to pass IEC 61215 standards. The results show the new frame (with a bottom width of 29 mm and thickness of 1.5 mm) has about a 2% land use efficiency penalty, but has better mechanical stability (lower stress and deflections), is easier to install, and has reduced material economic costs compared to conventional frames. The results are promising for the use of the new PV frame designs for distributed manufacturing targeted at specific applications.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":"214 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanical and economic analysis of conventional aluminum photovoltaic module frames, frames with side holes, and open-source downward-fastened frames for non-traditional racking\",\"authors\":\"Seyyed Ali Sadat, Nicholas Vandewetering, Joshua Pearce\",\"doi\":\"10.1115/1.4063493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using bolts through the back of a solar photovoltaic (PV) module frames to attach them to racking is time consuming and awkward, so commercial PV installations use clamping technologies on the front. Conventional and proprietary clamps are costly and demand access to supply chains for uncommon mechanical components that limit deployment velocity. To overcome these challenges, this study presents new open-source downward-fastened and side-fastened aluminum (Al) framing designs, which are easy to install and compatible with metal and wood racks. The proposed parametric open-source designs are analyzed through finite element method (FEM) simulations and economic analysis is performed to compare to conventional PV frame at both the module and system levels. The FEM results showed all the frames have acceptable mechanical reliability and stability to pass IEC 61215 standards. The results show the new frame (with a bottom width of 29 mm and thickness of 1.5 mm) has about a 2% land use efficiency penalty, but has better mechanical stability (lower stress and deflections), is easier to install, and has reduced material economic costs compared to conventional frames. The results are promising for the use of the new PV frame designs for distributed manufacturing targeted at specific applications.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063493\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063493","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mechanical and economic analysis of conventional aluminum photovoltaic module frames, frames with side holes, and open-source downward-fastened frames for non-traditional racking
Abstract Using bolts through the back of a solar photovoltaic (PV) module frames to attach them to racking is time consuming and awkward, so commercial PV installations use clamping technologies on the front. Conventional and proprietary clamps are costly and demand access to supply chains for uncommon mechanical components that limit deployment velocity. To overcome these challenges, this study presents new open-source downward-fastened and side-fastened aluminum (Al) framing designs, which are easy to install and compatible with metal and wood racks. The proposed parametric open-source designs are analyzed through finite element method (FEM) simulations and economic analysis is performed to compare to conventional PV frame at both the module and system levels. The FEM results showed all the frames have acceptable mechanical reliability and stability to pass IEC 61215 standards. The results show the new frame (with a bottom width of 29 mm and thickness of 1.5 mm) has about a 2% land use efficiency penalty, but has better mechanical stability (lower stress and deflections), is easier to install, and has reduced material economic costs compared to conventional frames. The results are promising for the use of the new PV frame designs for distributed manufacturing targeted at specific applications.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.