{"title":"具有长程相关的随机分层介质中波前的有效分数阶傍轴波动方程","authors":"Christophe Gomez","doi":"10.1137/22m1525594","DOIUrl":null,"url":null,"abstract":"This work concerns the asymptotic analysis of high-frequency wave propagation in randomly layered media with fast variations and long-range correlations. The analysis takes place in the three-dimensional physical space and weak-coupling regime. The role played by the slow decay of the correlations on a propagating pulse is twofold. First we observe a random travel time characterized by a fractional Brownian motion that appears to have a standard deviation larger than the pulse width, which is in contrast with the standard O’Doherty–Anstey theory for random propagation media with mixing properties. Second, a deterministic pulse deformation is described as the solution of a paraxial wave equation involving a pseudodifferential operator. This operator is characterized by the autocorrelation function of the medium fluctuations. In case of fluctuations with long-range correlations this operator is close to a fractional Weyl derivative whose order, between 2 and 3, depends on the power decay of the autocorrelation function. In the frequency domain, the pseudodifferential operator exhibits a frequency-dependent power-law attenuation with exponent corresponding to the order of the fractional derivative, and a frequency-dependent phase modulation, both ensuring the causality of the limiting paraxial wave equation as well as the Kramers–Kronig relations. The mathematical analysis is based on an approximation-diffusion theorem for random ordinary differential equations with long-range correlations.","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":"14 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Effective Fractional Paraxial Wave Equation for Wave-Fronts in Randomly Layered Media with Long-Range Correlations\",\"authors\":\"Christophe Gomez\",\"doi\":\"10.1137/22m1525594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work concerns the asymptotic analysis of high-frequency wave propagation in randomly layered media with fast variations and long-range correlations. The analysis takes place in the three-dimensional physical space and weak-coupling regime. The role played by the slow decay of the correlations on a propagating pulse is twofold. First we observe a random travel time characterized by a fractional Brownian motion that appears to have a standard deviation larger than the pulse width, which is in contrast with the standard O’Doherty–Anstey theory for random propagation media with mixing properties. Second, a deterministic pulse deformation is described as the solution of a paraxial wave equation involving a pseudodifferential operator. This operator is characterized by the autocorrelation function of the medium fluctuations. In case of fluctuations with long-range correlations this operator is close to a fractional Weyl derivative whose order, between 2 and 3, depends on the power decay of the autocorrelation function. In the frequency domain, the pseudodifferential operator exhibits a frequency-dependent power-law attenuation with exponent corresponding to the order of the fractional derivative, and a frequency-dependent phase modulation, both ensuring the causality of the limiting paraxial wave equation as well as the Kramers–Kronig relations. The mathematical analysis is based on an approximation-diffusion theorem for random ordinary differential equations with long-range correlations.\",\"PeriodicalId\":49791,\"journal\":{\"name\":\"Multiscale Modeling & Simulation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling & Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1525594\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1525594","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Effective Fractional Paraxial Wave Equation for Wave-Fronts in Randomly Layered Media with Long-Range Correlations
This work concerns the asymptotic analysis of high-frequency wave propagation in randomly layered media with fast variations and long-range correlations. The analysis takes place in the three-dimensional physical space and weak-coupling regime. The role played by the slow decay of the correlations on a propagating pulse is twofold. First we observe a random travel time characterized by a fractional Brownian motion that appears to have a standard deviation larger than the pulse width, which is in contrast with the standard O’Doherty–Anstey theory for random propagation media with mixing properties. Second, a deterministic pulse deformation is described as the solution of a paraxial wave equation involving a pseudodifferential operator. This operator is characterized by the autocorrelation function of the medium fluctuations. In case of fluctuations with long-range correlations this operator is close to a fractional Weyl derivative whose order, between 2 and 3, depends on the power decay of the autocorrelation function. In the frequency domain, the pseudodifferential operator exhibits a frequency-dependent power-law attenuation with exponent corresponding to the order of the fractional derivative, and a frequency-dependent phase modulation, both ensuring the causality of the limiting paraxial wave equation as well as the Kramers–Kronig relations. The mathematical analysis is based on an approximation-diffusion theorem for random ordinary differential equations with long-range correlations.
期刊介绍:
Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods.
By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.