{"title":"局部性与中心性:品种ZG","authors":"Antoine Amarilli, Charles Paperman","doi":"10.46298/lmcs-19(4:4)2023","DOIUrl":null,"url":null,"abstract":"We study the variety ZG of monoids where the elements that belong to a group are central, i.e., commute with all other elements. We show that ZG is local, that is, the semidirect product ZG * D of ZG by definite semigroups is equal to LZG, the variety of semigroups where all local monoids are in ZG. Our main result is thus: ZG * D = LZG. We prove this result using Straubing's delay theorem, by considering paths in the category of idempotents. In the process, we obtain the characterization ZG = MNil \\vee Com, and also characterize the ZG languages, i.e., the languages whose syntactic monoid is in ZG: they are precisely the languages that are finite unions of disjoint shuffles of singleton languages and regular commutative languages.","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Locality and Centrality: The Variety ZG\",\"authors\":\"Antoine Amarilli, Charles Paperman\",\"doi\":\"10.46298/lmcs-19(4:4)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the variety ZG of monoids where the elements that belong to a group are central, i.e., commute with all other elements. We show that ZG is local, that is, the semidirect product ZG * D of ZG by definite semigroups is equal to LZG, the variety of semigroups where all local monoids are in ZG. Our main result is thus: ZG * D = LZG. We prove this result using Straubing's delay theorem, by considering paths in the category of idempotents. In the process, we obtain the characterization ZG = MNil \\\\vee Com, and also characterize the ZG languages, i.e., the languages whose syntactic monoid is in ZG: they are precisely the languages that are finite unions of disjoint shuffles of singleton languages and regular commutative languages.\",\"PeriodicalId\":49904,\"journal\":{\"name\":\"Logical Methods in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logical Methods in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(4:4)2023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(4:4)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We study the variety ZG of monoids where the elements that belong to a group are central, i.e., commute with all other elements. We show that ZG is local, that is, the semidirect product ZG * D of ZG by definite semigroups is equal to LZG, the variety of semigroups where all local monoids are in ZG. Our main result is thus: ZG * D = LZG. We prove this result using Straubing's delay theorem, by considering paths in the category of idempotents. In the process, we obtain the characterization ZG = MNil \vee Com, and also characterize the ZG languages, i.e., the languages whose syntactic monoid is in ZG: they are precisely the languages that are finite unions of disjoint shuffles of singleton languages and regular commutative languages.
期刊介绍:
Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author.
Topics of Logical Methods in Computer Science:
Algebraic methods
Automata and logic
Automated deduction
Categorical models and logic
Coalgebraic methods
Computability and Logic
Computer-aided verification
Concurrency theory
Constraint programming
Cyber-physical systems
Database theory
Defeasible reasoning
Domain theory
Emerging topics: Computational systems in biology
Emerging topics: Quantum computation and logic
Finite model theory
Formalized mathematics
Functional programming and lambda calculus
Inductive logic and learning
Interactive proof checking
Logic and algorithms
Logic and complexity
Logic and games
Logic and probability
Logic for knowledge representation
Logic programming
Logics of programs
Modal and temporal logics
Program analysis and type checking
Program development and specification
Proof complexity
Real time and hybrid systems
Reasoning about actions and planning
Satisfiability
Security
Semantics of programming languages
Term rewriting and equational logic
Type theory and constructive mathematics.