J. Tabin, K. Nalepka, J. Kawałko, A. Brodecki, P. Bała, Z. Kowalewski
{"title":"304奥氏体不锈钢在室温下的塑性流动不稳定性","authors":"J. Tabin, K. Nalepka, J. Kawałko, A. Brodecki, P. Bała, Z. Kowalewski","doi":"10.1007/s11661-023-07223-5","DOIUrl":null,"url":null,"abstract":"Abstract A remarkable plastic flow instability is observed during tensile deformation of the commercial 304 stainless-steel sheet at room temperature. It has been found that the occurrence of plastic flow instability in 304 is dependent on the strain rate and specimen gage length. Moreover, it is essentially the same as the necking caused by plastic instability in 316L. However, the enhanced strain hardening resulting from deformation-induced martensitic transformation facilitates the orderly propagation of the strain-localized band. Graphical Abstract","PeriodicalId":49827,"journal":{"name":"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science","volume":"23 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic Flow Instability in 304 Austenitic Stainless Steels at Room Temperature\",\"authors\":\"J. Tabin, K. Nalepka, J. Kawałko, A. Brodecki, P. Bała, Z. Kowalewski\",\"doi\":\"10.1007/s11661-023-07223-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A remarkable plastic flow instability is observed during tensile deformation of the commercial 304 stainless-steel sheet at room temperature. It has been found that the occurrence of plastic flow instability in 304 is dependent on the strain rate and specimen gage length. Moreover, it is essentially the same as the necking caused by plastic instability in 316L. However, the enhanced strain hardening resulting from deformation-induced martensitic transformation facilitates the orderly propagation of the strain-localized band. Graphical Abstract\",\"PeriodicalId\":49827,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-023-07223-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-023-07223-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Plastic Flow Instability in 304 Austenitic Stainless Steels at Room Temperature
Abstract A remarkable plastic flow instability is observed during tensile deformation of the commercial 304 stainless-steel sheet at room temperature. It has been found that the occurrence of plastic flow instability in 304 is dependent on the strain rate and specimen gage length. Moreover, it is essentially the same as the necking caused by plastic instability in 316L. However, the enhanced strain hardening resulting from deformation-induced martensitic transformation facilitates the orderly propagation of the strain-localized band. Graphical Abstract
期刊介绍:
Metallurgical and Materials Transactions A focuses on the latest research in all aspects of physical metallurgy and materials science. It explores relationships among processing, structure, and properties of materials; publishes critically reviewed, original research of archival significance.
The journal address the main topics of alloy phases; transformations; transport phenomena; mechanical behavior; physical chemistry; environment; welding & joining; surface treatment; electronic, magnetic & optical material; solidification; materials processing; composite materials; biomaterials; and light metals. MMTA publishes Technical Publications, Communications, Symposia, and more.
Published with ASM International, The Materials Information Society and The Minerals, Metals & Materials Society (TMS)