{"title":"基于图和时间序列的网络故障预测","authors":"Zhongliang Li, Junjun Ding, Zongming Ma","doi":"10.1142/s0218194023500560","DOIUrl":null,"url":null,"abstract":"With the explosion of 5G network scale, the network structure becomes increasingly complex. During the operation of the network devices, the probability of anomalies or faults increases accordingly. Network faults may lead to the disappearance of important information and cause unpredictable losses. The prediction of network faults can enhance the quality of network services and reduce economic loss. In this paper, we propose the concept of 4D features and use the BERT algorithm to extract semantic features, the graph neural network algorithm to extract network topology information, and the Temporal Convolutional Network (TCN) algorithm to extract time series. Based on this, we propose Fault Prediction based on GraphSage and TCN (GTFP), an end-to-end solution of network fault alarm prediction, which is based on GraphSage and TCN (GTCN), a hybrid algorithm of a graph neural network and the TCN model. Our solution takes the historical alarm data as input. First, we filter out the alarm noises irrelevant to the faults through data cleaning. Then, we employ feature engineering to extract the valid alarm features, including the statistical features of the network alarm information, the semantic features of the alarm texts, the sequential features of the alarms and the network topology features of the nodes where the alarms are located. Finally, we use GTCN to predict future fault alarms based on the extracted features. Experiments on the alarm data of a real service system show that GTFP performs better than the state-of-the-art algorithms of fault alarm prediction.","PeriodicalId":50288,"journal":{"name":"International Journal of Software Engineering and Knowledge Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GTFP: Network Fault Prediction Based on Graph and Time Series\",\"authors\":\"Zhongliang Li, Junjun Ding, Zongming Ma\",\"doi\":\"10.1142/s0218194023500560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the explosion of 5G network scale, the network structure becomes increasingly complex. During the operation of the network devices, the probability of anomalies or faults increases accordingly. Network faults may lead to the disappearance of important information and cause unpredictable losses. The prediction of network faults can enhance the quality of network services and reduce economic loss. In this paper, we propose the concept of 4D features and use the BERT algorithm to extract semantic features, the graph neural network algorithm to extract network topology information, and the Temporal Convolutional Network (TCN) algorithm to extract time series. Based on this, we propose Fault Prediction based on GraphSage and TCN (GTFP), an end-to-end solution of network fault alarm prediction, which is based on GraphSage and TCN (GTCN), a hybrid algorithm of a graph neural network and the TCN model. Our solution takes the historical alarm data as input. First, we filter out the alarm noises irrelevant to the faults through data cleaning. Then, we employ feature engineering to extract the valid alarm features, including the statistical features of the network alarm information, the semantic features of the alarm texts, the sequential features of the alarms and the network topology features of the nodes where the alarms are located. Finally, we use GTCN to predict future fault alarms based on the extracted features. Experiments on the alarm data of a real service system show that GTFP performs better than the state-of-the-art algorithms of fault alarm prediction.\",\"PeriodicalId\":50288,\"journal\":{\"name\":\"International Journal of Software Engineering and Knowledge Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Engineering and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218194023500560\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218194023500560","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GTFP: Network Fault Prediction Based on Graph and Time Series
With the explosion of 5G network scale, the network structure becomes increasingly complex. During the operation of the network devices, the probability of anomalies or faults increases accordingly. Network faults may lead to the disappearance of important information and cause unpredictable losses. The prediction of network faults can enhance the quality of network services and reduce economic loss. In this paper, we propose the concept of 4D features and use the BERT algorithm to extract semantic features, the graph neural network algorithm to extract network topology information, and the Temporal Convolutional Network (TCN) algorithm to extract time series. Based on this, we propose Fault Prediction based on GraphSage and TCN (GTFP), an end-to-end solution of network fault alarm prediction, which is based on GraphSage and TCN (GTCN), a hybrid algorithm of a graph neural network and the TCN model. Our solution takes the historical alarm data as input. First, we filter out the alarm noises irrelevant to the faults through data cleaning. Then, we employ feature engineering to extract the valid alarm features, including the statistical features of the network alarm information, the semantic features of the alarm texts, the sequential features of the alarms and the network topology features of the nodes where the alarms are located. Finally, we use GTCN to predict future fault alarms based on the extracted features. Experiments on the alarm data of a real service system show that GTFP performs better than the state-of-the-art algorithms of fault alarm prediction.
期刊介绍:
The International Journal of Software Engineering and Knowledge Engineering is intended to serve as a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of software engineering and knowledge engineering. Three types of papers will be published:
Research papers reporting original research results
Technology trend surveys reviewing an area of research in software engineering and knowledge engineering
Survey articles surveying a broad area in software engineering and knowledge engineering
In addition, tool reviews (no more than three manuscript pages) and book reviews (no more than two manuscript pages) are also welcome.
A central theme of this journal is the interplay between software engineering and knowledge engineering: how knowledge engineering methods can be applied to software engineering, and vice versa. The journal publishes papers in the areas of software engineering methods and practices, object-oriented systems, rapid prototyping, software reuse, cleanroom software engineering, stepwise refinement/enhancement, formal methods of specification, ambiguity in software development, impact of CASE on software development life cycle, knowledge engineering methods and practices, logic programming, expert systems, knowledge-based systems, distributed knowledge-based systems, deductive database systems, knowledge representations, knowledge-based systems in language translation & processing, software and knowledge-ware maintenance, reverse engineering in software design, and applications in various domains of interest.