{"title":"关于边-顶点独立支配的进一步结果","authors":"Mustapha Chellali","doi":"10.1142/s1793830923500805","DOIUrl":null,"url":null,"abstract":"Given a graph [Formula: see text] with no isolated vertices, let [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] denote the ev-domination number, the independent ev-domination number, the upper independent ev-domination number, the domination number, the paired-domination number and the upper paired-domination number, respectively. It is known that [Formula: see text] In this paper, we extend this inequality chain to involve the upper paired-domination number for arbitrary graphs [Formula: see text] with no isolated vertices as well as the domination number for trees. Moreover, we show that recognizing well ev-covered graphs (i.e., graphs [Formula: see text] with [Formula: see text]) is co-NP-complete, solving an open problem posed by Boutrig and Chellali.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"140 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further results on independent edge-vertex domination\",\"authors\":\"Mustapha Chellali\",\"doi\":\"10.1142/s1793830923500805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph [Formula: see text] with no isolated vertices, let [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] denote the ev-domination number, the independent ev-domination number, the upper independent ev-domination number, the domination number, the paired-domination number and the upper paired-domination number, respectively. It is known that [Formula: see text] In this paper, we extend this inequality chain to involve the upper paired-domination number for arbitrary graphs [Formula: see text] with no isolated vertices as well as the domination number for trees. Moreover, we show that recognizing well ev-covered graphs (i.e., graphs [Formula: see text] with [Formula: see text]) is co-NP-complete, solving an open problem posed by Boutrig and Chellali.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
给定一个没有孤立顶点的图[公式:见文],令[公式:见文][公式:见文][公式:见文][公式:见文][公式:见文][公式:见文][公式:见文]和[公式:见文]分别表示ev- dominance数、独立ev- dominance数、上独立ev- dominance数、统治数、成对统治数和上成对统治数。在本文中,我们将这个不等式链推广到任意无孤立顶点的图(公式:见文)的上对支配数以及树的支配数。此外,我们证明了识别良好的evo -covered图(即带有[Formula: see text]的图[Formula: see text])是共np完全的,解决了由Boutrig和Chellali提出的一个开放问题。
Further results on independent edge-vertex domination
Given a graph [Formula: see text] with no isolated vertices, let [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] denote the ev-domination number, the independent ev-domination number, the upper independent ev-domination number, the domination number, the paired-domination number and the upper paired-domination number, respectively. It is known that [Formula: see text] In this paper, we extend this inequality chain to involve the upper paired-domination number for arbitrary graphs [Formula: see text] with no isolated vertices as well as the domination number for trees. Moreover, we show that recognizing well ev-covered graphs (i.e., graphs [Formula: see text] with [Formula: see text]) is co-NP-complete, solving an open problem posed by Boutrig and Chellali.