利用球上旋量BEC的块孤子缠绕实参数和序参数空间

Yan He, Chih-Chun Chien
{"title":"利用球上旋量BEC的块孤子缠绕实参数和序参数空间","authors":"Yan He, Chih-Chun Chien","doi":"10.1088/1361-6455/ad013b","DOIUrl":null,"url":null,"abstract":"Abstract The three condensate wavefunctions of a F = 1 spinor Bose–Einstein condensate on a spherical shell can map the real space to the order-parameter space that also has a spherical geometry, giving rise to topological excitations called lump solitons. The homotopy of the mapping endows the lump solitons with quantized winding numbers counting the wrapping between the two spaces. We present several lump-soliton solutions to the nonlinear coupled equations minimizing the energy functional. The energies of the lump solitons with different winding numbers indicate coexistence of lumps with different winding numbers and a lack of advantage to break a higher-winding lump soliton into multiple lower-winding ones. Possible implications are discussed since the predictions are testable in cold-atom experiments.","PeriodicalId":16799,"journal":{"name":"Journal of Physics B","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Winding real and order-parameter spaces via lump solitons of spinor BEC on sphere\",\"authors\":\"Yan He, Chih-Chun Chien\",\"doi\":\"10.1088/1361-6455/ad013b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The three condensate wavefunctions of a F = 1 spinor Bose–Einstein condensate on a spherical shell can map the real space to the order-parameter space that also has a spherical geometry, giving rise to topological excitations called lump solitons. The homotopy of the mapping endows the lump solitons with quantized winding numbers counting the wrapping between the two spaces. We present several lump-soliton solutions to the nonlinear coupled equations minimizing the energy functional. The energies of the lump solitons with different winding numbers indicate coexistence of lumps with different winding numbers and a lack of advantage to break a higher-winding lump soliton into multiple lower-winding ones. Possible implications are discussed since the predictions are testable in cold-atom experiments.\",\"PeriodicalId\":16799,\"journal\":{\"name\":\"Journal of Physics B\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad013b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad013b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

球壳上F = 1旋量玻色-爱因斯坦凝聚的三个凝聚波函数可以将实空间映射到同样具有球几何的序参数空间,从而产生称为块状孤子的拓扑激励。映射的同伦赋予块状孤子量子化的圈数来计算两个空间之间的缠绕。给出了最小化能量泛函非线性耦合方程的几个块孤子解。不同圈数块状孤子的能量表明不同圈数的块状孤子共存,缺乏将一个高圈数的块状孤子分解成多个低圈数的块状孤子的优势。由于这些预测在冷原子实验中是可检验的,因此讨论了可能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Winding real and order-parameter spaces via lump solitons of spinor BEC on sphere
Abstract The three condensate wavefunctions of a F = 1 spinor Bose–Einstein condensate on a spherical shell can map the real space to the order-parameter space that also has a spherical geometry, giving rise to topological excitations called lump solitons. The homotopy of the mapping endows the lump solitons with quantized winding numbers counting the wrapping between the two spaces. We present several lump-soliton solutions to the nonlinear coupled equations minimizing the energy functional. The energies of the lump solitons with different winding numbers indicate coexistence of lumps with different winding numbers and a lack of advantage to break a higher-winding lump soliton into multiple lower-winding ones. Possible implications are discussed since the predictions are testable in cold-atom experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信