{"title":"3-强制2-结构","authors":"Abderrahim Boussairi, Pierre Ille","doi":"10.1142/s1793830923500866","DOIUrl":null,"url":null,"abstract":"Given sets [Formula: see text] and [Formula: see text], a labeled 2-structure is a function [Formula: see text] from [Formula: see text] to [Formula: see text]. The set [Formula: see text] is called the vertex set of [Formula: see text] and denoted by [Formula: see text]. The label set of [Formula: see text] is the set [Formula: see text] of [Formula: see text] such that [Formula: see text] for some [Formula: see text]. Given [Formula: see text], the 2-substructure [Formula: see text] of [Formula: see text] is denoted by [Formula: see text]. The dual [Formula: see text] of [Formula: see text] is defined on [Formula: see text] as follows. For distinct [Formula: see text], [Formula: see text]. A labeled 2-Structure [Formula: see text] is reversible provided that for [Formula: see text] such that [Formula: see text] and [Formula: see text], if [Formula: see text], then [Formula: see text]. We only consider reversible labeled 2-structures whose vertex set is finite. Let [Formula: see text] and [Formula: see text] be 2-structures such that [Formula: see text]. Given [Formula: see text], [Formula: see text] and [Formula: see text] are [Formula: see text]-hemimorphic if for every [Formula: see text] such that [Formula: see text], [Formula: see text] is isomorphic to [Formula: see text] or [Formula: see text]. Furthermore, let [Formula: see text] be a 2-structure. Given [Formula: see text], [Formula: see text] is [Formula: see text]-forced if [Formula: see text] and [Formula: see text] are the only 2-structures [Formula: see text]-hemimorphic to [Formula: see text]. We characterize the [Formula: see text]-forced 2-structures. Last, we provide a large class of [Formula: see text]-forced 2-structures.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 3-forced 2-structures\",\"authors\":\"Abderrahim Boussairi, Pierre Ille\",\"doi\":\"10.1142/s1793830923500866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given sets [Formula: see text] and [Formula: see text], a labeled 2-structure is a function [Formula: see text] from [Formula: see text] to [Formula: see text]. The set [Formula: see text] is called the vertex set of [Formula: see text] and denoted by [Formula: see text]. The label set of [Formula: see text] is the set [Formula: see text] of [Formula: see text] such that [Formula: see text] for some [Formula: see text]. Given [Formula: see text], the 2-substructure [Formula: see text] of [Formula: see text] is denoted by [Formula: see text]. The dual [Formula: see text] of [Formula: see text] is defined on [Formula: see text] as follows. For distinct [Formula: see text], [Formula: see text]. A labeled 2-Structure [Formula: see text] is reversible provided that for [Formula: see text] such that [Formula: see text] and [Formula: see text], if [Formula: see text], then [Formula: see text]. We only consider reversible labeled 2-structures whose vertex set is finite. Let [Formula: see text] and [Formula: see text] be 2-structures such that [Formula: see text]. Given [Formula: see text], [Formula: see text] and [Formula: see text] are [Formula: see text]-hemimorphic if for every [Formula: see text] such that [Formula: see text], [Formula: see text] is isomorphic to [Formula: see text] or [Formula: see text]. Furthermore, let [Formula: see text] be a 2-structure. Given [Formula: see text], [Formula: see text] is [Formula: see text]-forced if [Formula: see text] and [Formula: see text] are the only 2-structures [Formula: see text]-hemimorphic to [Formula: see text]. We characterize the [Formula: see text]-forced 2-structures. Last, we provide a large class of [Formula: see text]-forced 2-structures.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
给定集合[公式:见文]和[公式:见文],标记的2-结构是一个函数[公式:见文]从[公式:见文]到[公式:见文]。集合[公式:见文]称为[公式:见文]的顶点集,用[公式:见文]表示。[Formula: see text]的标签集是[Formula: see text]的集合[Formula: see text],使得[Formula: see text]对于某些[Formula: see text]。给定[公式:见文],[公式:见文]的二子结构[公式:见文]用[公式:见文]表示。[Formula: see text]的对偶[Formula: see text]在[Formula: see text]上定义如下。对于不同的[公式:见文],[公式:见文]。标记的2-结构[公式:见文]是可逆的,前提是[公式:见文]使[公式:见文]和[公式:见文],如果[公式:见文],则[公式:见文]。我们只考虑顶点集有限的可逆标记2结构。设[公式:见文]和[公式:见文]为两个结构,这样[公式:见文]。给定[公式:见文],[公式:见文]和[公式:见文]是[公式:见文]-半同构,如果对于每一个[公式:见文],使得[公式:见文],[公式:见文]与[公式:见文]或[公式:见文]同构。此外,设[公式:见文本]为双结构。给定[公式:见文],[公式:见文]是[公式:见文]-强制如果[公式:见文]和[公式:见文]是唯一的2-结构[公式:见文]-半同态[公式:见文]。我们描述了[公式:见文本]-强制2结构。最后,我们提供了一大类[公式:见文本]-强制2结构。
Given sets [Formula: see text] and [Formula: see text], a labeled 2-structure is a function [Formula: see text] from [Formula: see text] to [Formula: see text]. The set [Formula: see text] is called the vertex set of [Formula: see text] and denoted by [Formula: see text]. The label set of [Formula: see text] is the set [Formula: see text] of [Formula: see text] such that [Formula: see text] for some [Formula: see text]. Given [Formula: see text], the 2-substructure [Formula: see text] of [Formula: see text] is denoted by [Formula: see text]. The dual [Formula: see text] of [Formula: see text] is defined on [Formula: see text] as follows. For distinct [Formula: see text], [Formula: see text]. A labeled 2-Structure [Formula: see text] is reversible provided that for [Formula: see text] such that [Formula: see text] and [Formula: see text], if [Formula: see text], then [Formula: see text]. We only consider reversible labeled 2-structures whose vertex set is finite. Let [Formula: see text] and [Formula: see text] be 2-structures such that [Formula: see text]. Given [Formula: see text], [Formula: see text] and [Formula: see text] are [Formula: see text]-hemimorphic if for every [Formula: see text] such that [Formula: see text], [Formula: see text] is isomorphic to [Formula: see text] or [Formula: see text]. Furthermore, let [Formula: see text] be a 2-structure. Given [Formula: see text], [Formula: see text] is [Formula: see text]-forced if [Formula: see text] and [Formula: see text] are the only 2-structures [Formula: see text]-hemimorphic to [Formula: see text]. We characterize the [Formula: see text]-forced 2-structures. Last, we provide a large class of [Formula: see text]-forced 2-structures.