用Wasserstein生成对抗网络逼近概率分布

IF 1.9 Q1 MATHEMATICS, APPLIED
Yihang Gao, Michael K. Ng, Mingjie Zhou
{"title":"用Wasserstein生成对抗网络逼近概率分布","authors":"Yihang Gao, Michael K. Ng, Mingjie Zhou","doi":"10.1137/22m149689x","DOIUrl":null,"url":null,"abstract":"Studied here are Wasserstein generative adversarial networks (WGANs) with GroupSort neural networks as their discriminators. It is shown that the error bound of the approximation for the target distribution depends on the width and depth (capacity) of the generators and discriminators and the number of samples in training. A quantified generalization bound is established for the Wasserstein distance between the generated and target distributions. According to the theoretical results, WGANs have a higher requirement for the capacity of discriminators than that of generators, which is consistent with some existing results. More importantly, the results with overly deep and wide (high-capacity) generators may be worse than those with low-capacity generators if discriminators are insufficiently strong. Numerical results obtained using Swiss roll and MNIST datasets confirm the theoretical results.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"4 6","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks\",\"authors\":\"Yihang Gao, Michael K. Ng, Mingjie Zhou\",\"doi\":\"10.1137/22m149689x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studied here are Wasserstein generative adversarial networks (WGANs) with GroupSort neural networks as their discriminators. It is shown that the error bound of the approximation for the target distribution depends on the width and depth (capacity) of the generators and discriminators and the number of samples in training. A quantified generalization bound is established for the Wasserstein distance between the generated and target distributions. According to the theoretical results, WGANs have a higher requirement for the capacity of discriminators than that of generators, which is consistent with some existing results. More importantly, the results with overly deep and wide (high-capacity) generators may be worse than those with low-capacity generators if discriminators are insufficiently strong. Numerical results obtained using Swiss roll and MNIST datasets confirm the theoretical results.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"4 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m149689x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m149689x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以GroupSort神经网络作为判别器的WGANs。结果表明,目标分布近似的误差界取决于生成器和鉴别器的宽度和深度(容量)以及训练样本的数量。建立了生成分布与目标分布之间的Wasserstein距离的量化泛化界。理论结果表明,wgan对鉴别器的容量要求高于产生器的容量要求,这与已有的一些结果一致。更重要的是,如果鉴别器不够强大,那么使用过深和过宽(高容量)生成器的结果可能比使用低容量生成器的结果更差。使用Swiss roll和MNIST数据集获得的数值结果证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks
Studied here are Wasserstein generative adversarial networks (WGANs) with GroupSort neural networks as their discriminators. It is shown that the error bound of the approximation for the target distribution depends on the width and depth (capacity) of the generators and discriminators and the number of samples in training. A quantified generalization bound is established for the Wasserstein distance between the generated and target distributions. According to the theoretical results, WGANs have a higher requirement for the capacity of discriminators than that of generators, which is consistent with some existing results. More importantly, the results with overly deep and wide (high-capacity) generators may be worse than those with low-capacity generators if discriminators are insufficiently strong. Numerical results obtained using Swiss roll and MNIST datasets confirm the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信