{"title":"具有信号时滞的自主地面车辆神经网络转向控制算法","authors":"Erkin Dinçmen","doi":"10.1177/09596518231199208","DOIUrl":null,"url":null,"abstract":"An adaptive neural network–based steering control algorithm is proposed for yaw rate tracking of autonomous ground vehicles with in-vehicle signal time delay. The control system consists of two neural networks: the observer neural network and the controller neural network. The observer neural network adapts itself to the system dynamics during the training phase. Once trained, the observer neural network cooperates with the controller neural network, which constantly adapts itself during the control task. In this way, an adaptive and intelligent control structure is proposed. Through simulation studies, it has been shown that while a proportional-integral-derivative type steering controller fails to perform its control task in case of steering signal delay, the proposed control algorithm manages to adapt itself according to the control problem and achieves reference yaw rate tracking. The robustness of the control algorithm according to the signal delay magnitude has been demonstrated by simulation studies. A rigorous Lyapunov stability analysis of the control algorithm is also presented.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"16 7","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network steering control algorithm for autonomous ground vehicles having signal time delay\",\"authors\":\"Erkin Dinçmen\",\"doi\":\"10.1177/09596518231199208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive neural network–based steering control algorithm is proposed for yaw rate tracking of autonomous ground vehicles with in-vehicle signal time delay. The control system consists of two neural networks: the observer neural network and the controller neural network. The observer neural network adapts itself to the system dynamics during the training phase. Once trained, the observer neural network cooperates with the controller neural network, which constantly adapts itself during the control task. In this way, an adaptive and intelligent control structure is proposed. Through simulation studies, it has been shown that while a proportional-integral-derivative type steering controller fails to perform its control task in case of steering signal delay, the proposed control algorithm manages to adapt itself according to the control problem and achieves reference yaw rate tracking. The robustness of the control algorithm according to the signal delay magnitude has been demonstrated by simulation studies. A rigorous Lyapunov stability analysis of the control algorithm is also presented.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"16 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518231199208\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09596518231199208","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Neural network steering control algorithm for autonomous ground vehicles having signal time delay
An adaptive neural network–based steering control algorithm is proposed for yaw rate tracking of autonomous ground vehicles with in-vehicle signal time delay. The control system consists of two neural networks: the observer neural network and the controller neural network. The observer neural network adapts itself to the system dynamics during the training phase. Once trained, the observer neural network cooperates with the controller neural network, which constantly adapts itself during the control task. In this way, an adaptive and intelligent control structure is proposed. Through simulation studies, it has been shown that while a proportional-integral-derivative type steering controller fails to perform its control task in case of steering signal delay, the proposed control algorithm manages to adapt itself according to the control problem and achieves reference yaw rate tracking. The robustness of the control algorithm according to the signal delay magnitude has been demonstrated by simulation studies. A rigorous Lyapunov stability analysis of the control algorithm is also presented.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.