{"title":"黄豆碱衍生黄酮及相关黄酮的合成及对茄枯丝核菌的抗植物病原真菌活性研究","authors":"Panuwat Onnom, Warot Chotpatiwetchkul, Jatuporn Meesin, Pilunthana Thapanapongworakul, Chokchai Kittiwongwattana, Nawasit Chotsaeng","doi":"10.55003/cast.2023.258374","DOIUrl":null,"url":null,"abstract":"Flavones are organic compounds in the flavonoid family that have a diverse range of biological functions. In this research, many flavones with various substituents were designed and synthesized from flavokawains A, B, and C, and their chalcone derivatives via an iodine-catalyzed oxidative cyclization process. All synthetic flavones were investigated for antifungal activities against Rhizoctonia solani, a plant pathogenic fungus. At 400 µg, most of the substances did not inhibit the tested species and R. solani growth was inhibited by only o-bromoflavone (40) by 74.88±0.91%. This indicated that the detrimental effect of flavones depends on the type and position of substituent, with the ortho bromo group showing the most promise. The molecular docking study on the succinate dehydrogenase (SDH) enzyme revealed that the bromophenyl moiety (ring B) is a key molecular substructure of the flavone fungicide. The findings of this study will be used to develop novel plant pathogenic fungicides.","PeriodicalId":36974,"journal":{"name":"Current Applied Science and Technology","volume":"6 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Anti-Plant Pathogenic Fungal Activity of Flavokawain-Derived Flavones and Related Flavones Against Rhizoctonia solani\",\"authors\":\"Panuwat Onnom, Warot Chotpatiwetchkul, Jatuporn Meesin, Pilunthana Thapanapongworakul, Chokchai Kittiwongwattana, Nawasit Chotsaeng\",\"doi\":\"10.55003/cast.2023.258374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flavones are organic compounds in the flavonoid family that have a diverse range of biological functions. In this research, many flavones with various substituents were designed and synthesized from flavokawains A, B, and C, and their chalcone derivatives via an iodine-catalyzed oxidative cyclization process. All synthetic flavones were investigated for antifungal activities against Rhizoctonia solani, a plant pathogenic fungus. At 400 µg, most of the substances did not inhibit the tested species and R. solani growth was inhibited by only o-bromoflavone (40) by 74.88±0.91%. This indicated that the detrimental effect of flavones depends on the type and position of substituent, with the ortho bromo group showing the most promise. The molecular docking study on the succinate dehydrogenase (SDH) enzyme revealed that the bromophenyl moiety (ring B) is a key molecular substructure of the flavone fungicide. The findings of this study will be used to develop novel plant pathogenic fungicides.\",\"PeriodicalId\":36974,\"journal\":{\"name\":\"Current Applied Science and Technology\",\"volume\":\"6 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55003/cast.2023.258374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55003/cast.2023.258374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Synthesis and Anti-Plant Pathogenic Fungal Activity of Flavokawain-Derived Flavones and Related Flavones Against Rhizoctonia solani
Flavones are organic compounds in the flavonoid family that have a diverse range of biological functions. In this research, many flavones with various substituents were designed and synthesized from flavokawains A, B, and C, and their chalcone derivatives via an iodine-catalyzed oxidative cyclization process. All synthetic flavones were investigated for antifungal activities against Rhizoctonia solani, a plant pathogenic fungus. At 400 µg, most of the substances did not inhibit the tested species and R. solani growth was inhibited by only o-bromoflavone (40) by 74.88±0.91%. This indicated that the detrimental effect of flavones depends on the type and position of substituent, with the ortho bromo group showing the most promise. The molecular docking study on the succinate dehydrogenase (SDH) enzyme revealed that the bromophenyl moiety (ring B) is a key molecular substructure of the flavone fungicide. The findings of this study will be used to develop novel plant pathogenic fungicides.