{"title":"一年制生产系统中温度和降雨对芦笋茎出苗和生长的影响","authors":"Takumi Taguchi, Satoru Motoki","doi":"10.1080/14620316.2023.2268066","DOIUrl":null,"url":null,"abstract":"ABSTRACTNewly developed asparagus farming involves planting seedlings in year one and harvesting all emerging spears without allowing the mother ferns to grow. However, changes in asparagus growth over time are unclear. Here, four-year cultivation trials were conducted under different climatic conditions to investigate temporal changes in growth. Plants were monitored weekly. The growing period was divided into three periods: spring and fall, both within optimum growing temperatures, and summer. Spring to the first half of summer revealed two to three peaks of increase in the number of effective stems. The number of effective stems decreased during high temperatures and decreased precipitation periods (summer), and recovered with an increase in precipitation. The number of effective stems displayed peaks during the second half of periods II and III. The increase in stem diameter mostly occurred during summer. Finally, the growing years that occurred with high temperatures and low precipitation in summer showed a significant positive correlation between the yield and maximum stem diameters in spring. The results of this study indicate that plant growth can be used to schedule pest control, irrigation, and fertiliser application for plants with limited resources.KEYWORDS: Asparagus officinalis L.Days after plantingmean air temperaturenumber of effective stemsprecipitationstem diameter AcknowledgementsWe would like to thank Editage (www.editage.com) for English language editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, Satoru Motoki, upon reasonable request.Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/14620316.2023.2268066","PeriodicalId":54808,"journal":{"name":"Journal of Horticultural Science & Biotechnology","volume":"38 7","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asparagus stem emergence and growth as influenced by temperature and rainfall in a one-year production system\",\"authors\":\"Takumi Taguchi, Satoru Motoki\",\"doi\":\"10.1080/14620316.2023.2268066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTNewly developed asparagus farming involves planting seedlings in year one and harvesting all emerging spears without allowing the mother ferns to grow. However, changes in asparagus growth over time are unclear. Here, four-year cultivation trials were conducted under different climatic conditions to investigate temporal changes in growth. Plants were monitored weekly. The growing period was divided into three periods: spring and fall, both within optimum growing temperatures, and summer. Spring to the first half of summer revealed two to three peaks of increase in the number of effective stems. The number of effective stems decreased during high temperatures and decreased precipitation periods (summer), and recovered with an increase in precipitation. The number of effective stems displayed peaks during the second half of periods II and III. The increase in stem diameter mostly occurred during summer. Finally, the growing years that occurred with high temperatures and low precipitation in summer showed a significant positive correlation between the yield and maximum stem diameters in spring. The results of this study indicate that plant growth can be used to schedule pest control, irrigation, and fertiliser application for plants with limited resources.KEYWORDS: Asparagus officinalis L.Days after plantingmean air temperaturenumber of effective stemsprecipitationstem diameter AcknowledgementsWe would like to thank Editage (www.editage.com) for English language editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, Satoru Motoki, upon reasonable request.Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/14620316.2023.2268066\",\"PeriodicalId\":54808,\"journal\":{\"name\":\"Journal of Horticultural Science & Biotechnology\",\"volume\":\"38 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Horticultural Science & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14620316.2023.2268066\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Horticultural Science & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14620316.2023.2268066","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
Asparagus stem emergence and growth as influenced by temperature and rainfall in a one-year production system
ABSTRACTNewly developed asparagus farming involves planting seedlings in year one and harvesting all emerging spears without allowing the mother ferns to grow. However, changes in asparagus growth over time are unclear. Here, four-year cultivation trials were conducted under different climatic conditions to investigate temporal changes in growth. Plants were monitored weekly. The growing period was divided into three periods: spring and fall, both within optimum growing temperatures, and summer. Spring to the first half of summer revealed two to three peaks of increase in the number of effective stems. The number of effective stems decreased during high temperatures and decreased precipitation periods (summer), and recovered with an increase in precipitation. The number of effective stems displayed peaks during the second half of periods II and III. The increase in stem diameter mostly occurred during summer. Finally, the growing years that occurred with high temperatures and low precipitation in summer showed a significant positive correlation between the yield and maximum stem diameters in spring. The results of this study indicate that plant growth can be used to schedule pest control, irrigation, and fertiliser application for plants with limited resources.KEYWORDS: Asparagus officinalis L.Days after plantingmean air temperaturenumber of effective stemsprecipitationstem diameter AcknowledgementsWe would like to thank Editage (www.editage.com) for English language editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, Satoru Motoki, upon reasonable request.Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/14620316.2023.2268066
期刊介绍:
The Journal of Horticultural Science and Biotechnology is an international, peer-reviewed journal, which publishes original research contributions into the production, improvement and utilisation of horticultural crops. It aims to provide scientific knowledge of interest to those engaged in scientific research and the practice of horticulture. The scope of the journal includes studies on fruit and other perennial crops, vegetables and ornamentals grown in temperate or tropical regions and their use in commercial, amenity or urban horticulture. Papers, including reviews, that give new insights into plant and crop growth, yield, quality and response to the environment, are welcome, including those arising from technological innovation and developments in crop genome sequencing and other biotechnological advances.