{"title":"非正交五轴机床位置无关几何误差补偿的简化代数算法","authors":"Shuang Ding, Xiao Zhang, Zhiwei Chen, Weiwei Wu","doi":"10.1177/09544054231205140","DOIUrl":null,"url":null,"abstract":"Geometric errors are the key error sources that affect the machining quality of a five-axis machine tool. In the case of a non-orthogonal five-axis machine tool (NOFAMT), the modelling and compensation of geometric errors can be quite complex. This paper proposes a simplified modelling algorithm to derive the analytical expressions for the position-independent geometric error (PIGE) compensation of a NOFAMT without generating higher-order error terms. First, the geometric error modelling was conducted based on the homogeneous transformation matrix (HTM). Then, algebraic expressions for PIGE compensation were obtained according to the actual inverse kinematics and a simplified algorithm. By using the simplified algorithm, the efficiency of deriving algebraic expressions for geometric error compensation can be greatly enhanced. The PIGE compensation’s numerical control (NC) codes can be directly computed using these algebraic expressions. Finally, the effectiveness and efficiency of the new algorithm were verified by numerical analysis and virtual machining. The detailed results were compared with those obtained using the differential method, and both sets of results showed the same trend.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"24 6","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Position-independent geometric error compensation of a non-orthogonal five-axis machine tool using a simplified algebraic algorithm\",\"authors\":\"Shuang Ding, Xiao Zhang, Zhiwei Chen, Weiwei Wu\",\"doi\":\"10.1177/09544054231205140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric errors are the key error sources that affect the machining quality of a five-axis machine tool. In the case of a non-orthogonal five-axis machine tool (NOFAMT), the modelling and compensation of geometric errors can be quite complex. This paper proposes a simplified modelling algorithm to derive the analytical expressions for the position-independent geometric error (PIGE) compensation of a NOFAMT without generating higher-order error terms. First, the geometric error modelling was conducted based on the homogeneous transformation matrix (HTM). Then, algebraic expressions for PIGE compensation were obtained according to the actual inverse kinematics and a simplified algorithm. By using the simplified algorithm, the efficiency of deriving algebraic expressions for geometric error compensation can be greatly enhanced. The PIGE compensation’s numerical control (NC) codes can be directly computed using these algebraic expressions. Finally, the effectiveness and efficiency of the new algorithm were verified by numerical analysis and virtual machining. The detailed results were compared with those obtained using the differential method, and both sets of results showed the same trend.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"24 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231205140\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231205140","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Position-independent geometric error compensation of a non-orthogonal five-axis machine tool using a simplified algebraic algorithm
Geometric errors are the key error sources that affect the machining quality of a five-axis machine tool. In the case of a non-orthogonal five-axis machine tool (NOFAMT), the modelling and compensation of geometric errors can be quite complex. This paper proposes a simplified modelling algorithm to derive the analytical expressions for the position-independent geometric error (PIGE) compensation of a NOFAMT without generating higher-order error terms. First, the geometric error modelling was conducted based on the homogeneous transformation matrix (HTM). Then, algebraic expressions for PIGE compensation were obtained according to the actual inverse kinematics and a simplified algorithm. By using the simplified algorithm, the efficiency of deriving algebraic expressions for geometric error compensation can be greatly enhanced. The PIGE compensation’s numerical control (NC) codes can be directly computed using these algebraic expressions. Finally, the effectiveness and efficiency of the new algorithm were verified by numerical analysis and virtual machining. The detailed results were compared with those obtained using the differential method, and both sets of results showed the same trend.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.