{"title":"精密滚动轴承单传感器三点在线测量方法","authors":"Lai Hu, Jun Zha, Peilong Song, Yaolong Chen","doi":"10.1177/09544054231202904","DOIUrl":null,"url":null,"abstract":"With the continuous development of machining methods, it is necessary to explore grinding and measuring methods to ensure the fatigue life and improved accuracy of bearings. In this study, a single-sensor three-point (SSTP) on-line outer-diameter measuring instrument was designed to ensure the consistency of the machining accuracy of precision bearing rings. Moreover, the mathematical model of the measuring instrument was established. The roundness and cylindricity error measurements of the ring outer diameter of precision bearings A and B form different manufacturers of countries were compared and analyzed. In addition, the accuracy measurement of the experimental grinder was investigated through multidimensional experiments. The results demonstrated a measuring and repetitive accuracy of ±1.25 and 1 μm, respectively. The measuring results conformed to the 3 б principle. The measured outer diameter was within the actual value of the workpiece outer diameter ±3 б, and the accuracy was over 99.73%. The instrument did only measure the outer diameter, but also measured the waviness error. The outer diameter and rotating speed did not clearly affect the measuring accuracy. The use of a lubricating fluid reduced the contact resistance of the on-line measuring instrument and significantly reduced the absolute error of outer diameter measurement, which is beneficial in improving the outer diameter measurement accuracy of the instrument.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"36 6","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single sensor three point on-line measurement method of precision rolling bearings\",\"authors\":\"Lai Hu, Jun Zha, Peilong Song, Yaolong Chen\",\"doi\":\"10.1177/09544054231202904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of machining methods, it is necessary to explore grinding and measuring methods to ensure the fatigue life and improved accuracy of bearings. In this study, a single-sensor three-point (SSTP) on-line outer-diameter measuring instrument was designed to ensure the consistency of the machining accuracy of precision bearing rings. Moreover, the mathematical model of the measuring instrument was established. The roundness and cylindricity error measurements of the ring outer diameter of precision bearings A and B form different manufacturers of countries were compared and analyzed. In addition, the accuracy measurement of the experimental grinder was investigated through multidimensional experiments. The results demonstrated a measuring and repetitive accuracy of ±1.25 and 1 μm, respectively. The measuring results conformed to the 3 б principle. The measured outer diameter was within the actual value of the workpiece outer diameter ±3 б, and the accuracy was over 99.73%. The instrument did only measure the outer diameter, but also measured the waviness error. The outer diameter and rotating speed did not clearly affect the measuring accuracy. The use of a lubricating fluid reduced the contact resistance of the on-line measuring instrument and significantly reduced the absolute error of outer diameter measurement, which is beneficial in improving the outer diameter measurement accuracy of the instrument.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"36 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231202904\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231202904","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Single sensor three point on-line measurement method of precision rolling bearings
With the continuous development of machining methods, it is necessary to explore grinding and measuring methods to ensure the fatigue life and improved accuracy of bearings. In this study, a single-sensor three-point (SSTP) on-line outer-diameter measuring instrument was designed to ensure the consistency of the machining accuracy of precision bearing rings. Moreover, the mathematical model of the measuring instrument was established. The roundness and cylindricity error measurements of the ring outer diameter of precision bearings A and B form different manufacturers of countries were compared and analyzed. In addition, the accuracy measurement of the experimental grinder was investigated through multidimensional experiments. The results demonstrated a measuring and repetitive accuracy of ±1.25 and 1 μm, respectively. The measuring results conformed to the 3 б principle. The measured outer diameter was within the actual value of the workpiece outer diameter ±3 б, and the accuracy was over 99.73%. The instrument did only measure the outer diameter, but also measured the waviness error. The outer diameter and rotating speed did not clearly affect the measuring accuracy. The use of a lubricating fluid reduced the contact resistance of the on-line measuring instrument and significantly reduced the absolute error of outer diameter measurement, which is beneficial in improving the outer diameter measurement accuracy of the instrument.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.