{"title":"建构型理论中一阶逻辑的材料对话:扩展版","authors":"Dominik Wehr, Dominik Kirst","doi":"10.1017/s0960129523000348","DOIUrl":null,"url":null,"abstract":"Abstract Dialogues are turn-taking games which model debates about the satisfaction of logical formulas. A novel variant played over first-order structures gives rise to a notion of first-order satisfaction. We study the induced notion of validity for classical and intuitionistic first-order logic in the constructive setting of the calculus of inductive constructions. We prove that such material dialogue semantics for classical first-order logic admits constructive soundness and completeness proofs, setting it apart from standard model-theoretic semantics of first-order logic. Furthermore, we prove that completeness with regard to intuitionistic material dialogues fails in both constructive and classical settings. As an alternative, we propose material dialogues played over Kripke structures. These Kripke material dialogues exhibit constructive completeness when restricting to the negative fragment. The results concerning classical material dialogues have been mechanized using the Coq interactive theorem prover.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"34 8","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material dialogues for first-order logic in constructive type theory: extended version\",\"authors\":\"Dominik Wehr, Dominik Kirst\",\"doi\":\"10.1017/s0960129523000348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Dialogues are turn-taking games which model debates about the satisfaction of logical formulas. A novel variant played over first-order structures gives rise to a notion of first-order satisfaction. We study the induced notion of validity for classical and intuitionistic first-order logic in the constructive setting of the calculus of inductive constructions. We prove that such material dialogue semantics for classical first-order logic admits constructive soundness and completeness proofs, setting it apart from standard model-theoretic semantics of first-order logic. Furthermore, we prove that completeness with regard to intuitionistic material dialogues fails in both constructive and classical settings. As an alternative, we propose material dialogues played over Kripke structures. These Kripke material dialogues exhibit constructive completeness when restricting to the negative fragment. The results concerning classical material dialogues have been mechanized using the Coq interactive theorem prover.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"34 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129523000348\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0960129523000348","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Material dialogues for first-order logic in constructive type theory: extended version
Abstract Dialogues are turn-taking games which model debates about the satisfaction of logical formulas. A novel variant played over first-order structures gives rise to a notion of first-order satisfaction. We study the induced notion of validity for classical and intuitionistic first-order logic in the constructive setting of the calculus of inductive constructions. We prove that such material dialogue semantics for classical first-order logic admits constructive soundness and completeness proofs, setting it apart from standard model-theoretic semantics of first-order logic. Furthermore, we prove that completeness with regard to intuitionistic material dialogues fails in both constructive and classical settings. As an alternative, we propose material dialogues played over Kripke structures. These Kripke material dialogues exhibit constructive completeness when restricting to the negative fragment. The results concerning classical material dialogues have been mechanized using the Coq interactive theorem prover.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.