模素数半群轨道的大小

Pub Date : 2023-11-03 DOI:10.2140/pjm.2023.325.281
Wade Hindes, Joseph H. Silverman
{"title":"模素数半群轨道的大小","authors":"Wade Hindes, Joseph H. Silverman","doi":"10.2140/pjm.2023.325.281","DOIUrl":null,"url":null,"abstract":"Let $V$ be a projective variety defined over a number field $K$, let $S$ be a polarized set of endomorphisms of $V$ all defined over $K$, and let $P\\in V(K)$. For each prime $\\mathfrak{p}$ of $K$, let $m_{\\mathfrak{p}}(S,P)$ denote the number of points in the orbit of $P\\bmod\\mathfrak{p}$ for the semigroup of maps generated by $S$. Under suitable hypotheses on $S$ and $P$, we prove an analytic estimate for $m_{\\mathfrak{p}}(S,P)$ and use it to show that the set of primes for which $m_{\\mathfrak{p}}(S,P)$ grows subexponentially as a function of $\\operatorname{\\mathsf{N}}_{K/\\mathbb{Q}}\\mathfrak{p}$ is a set of density zero. For $V=\\mathbb{P}^1$ we show that this holds for a generic set of maps $S$ provided that at least two of the maps in $S$ have degree at least four.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The size of semigroup orbits modulo primes\",\"authors\":\"Wade Hindes, Joseph H. Silverman\",\"doi\":\"10.2140/pjm.2023.325.281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $V$ be a projective variety defined over a number field $K$, let $S$ be a polarized set of endomorphisms of $V$ all defined over $K$, and let $P\\\\in V(K)$. For each prime $\\\\mathfrak{p}$ of $K$, let $m_{\\\\mathfrak{p}}(S,P)$ denote the number of points in the orbit of $P\\\\bmod\\\\mathfrak{p}$ for the semigroup of maps generated by $S$. Under suitable hypotheses on $S$ and $P$, we prove an analytic estimate for $m_{\\\\mathfrak{p}}(S,P)$ and use it to show that the set of primes for which $m_{\\\\mathfrak{p}}(S,P)$ grows subexponentially as a function of $\\\\operatorname{\\\\mathsf{N}}_{K/\\\\mathbb{Q}}\\\\mathfrak{p}$ is a set of density zero. For $V=\\\\mathbb{P}^1$ we show that this holds for a generic set of maps $S$ provided that at least two of the maps in $S$ have degree at least four.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.325.281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The size of semigroup orbits modulo primes
Let $V$ be a projective variety defined over a number field $K$, let $S$ be a polarized set of endomorphisms of $V$ all defined over $K$, and let $P\in V(K)$. For each prime $\mathfrak{p}$ of $K$, let $m_{\mathfrak{p}}(S,P)$ denote the number of points in the orbit of $P\bmod\mathfrak{p}$ for the semigroup of maps generated by $S$. Under suitable hypotheses on $S$ and $P$, we prove an analytic estimate for $m_{\mathfrak{p}}(S,P)$ and use it to show that the set of primes for which $m_{\mathfrak{p}}(S,P)$ grows subexponentially as a function of $\operatorname{\mathsf{N}}_{K/\mathbb{Q}}\mathfrak{p}$ is a set of density zero. For $V=\mathbb{P}^1$ we show that this holds for a generic set of maps $S$ provided that at least two of the maps in $S$ have degree at least four.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信