{"title":"地震加速度作用下溃坝的有限体积分析","authors":"Farshid Mosaddeghi, Mete Koken, Ismail Aydin","doi":"10.1080/00221686.2023.2259858","DOIUrl":null,"url":null,"abstract":"AbstractBecause of the complexity of the dam failure mechanism due to earthquakes that occur under the simultaneous influence of hydraulic and seismic forces, a single model has not been obtained so far and this study was conducted to achieve this model. In this paper, dam failure models including both sudden and gradual failure have been investigated using volume of fluid techniques (VOF) to simulate water fluxes, general moving object (GMO) to simulate moving bodies, and the fluid–structure interaction model for finite volume analysis. In order to be sure of the accuracy of the results, before examining the failure mechanisms, the verifications of utilized methods in the case of dam failure were proven using experimental and numerical studies from literature. The Koyna Dam earthquake of magnitude 6.5 (11 December 1967) is investigated as a test case. Comparison of the output discharges due to dam failure in the two failure models reveals that the peak discharge of sudden failure is recorded three times faster than the gradual failure mode. Another achievement that should be mentioned is that although large oscillating periods carry a higher risk of cracking of the dam’s body, smaller periods propagate the resulting cracks more rapidly.Keywords: Flood riskfluid–particle interactionshydraulic modelslakes and reservoirsRANS models Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementAll numerical data presented in this study are available from the corresponding author upon reasonable request. Supplementary studies are available to the public at the following address in the doctoral dissertation of the first author of the article: https://hdl.handle.net/11511/93072","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite volume analysis of dam breaking subjected to earthquake accelerations\",\"authors\":\"Farshid Mosaddeghi, Mete Koken, Ismail Aydin\",\"doi\":\"10.1080/00221686.2023.2259858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractBecause of the complexity of the dam failure mechanism due to earthquakes that occur under the simultaneous influence of hydraulic and seismic forces, a single model has not been obtained so far and this study was conducted to achieve this model. In this paper, dam failure models including both sudden and gradual failure have been investigated using volume of fluid techniques (VOF) to simulate water fluxes, general moving object (GMO) to simulate moving bodies, and the fluid–structure interaction model for finite volume analysis. In order to be sure of the accuracy of the results, before examining the failure mechanisms, the verifications of utilized methods in the case of dam failure were proven using experimental and numerical studies from literature. The Koyna Dam earthquake of magnitude 6.5 (11 December 1967) is investigated as a test case. Comparison of the output discharges due to dam failure in the two failure models reveals that the peak discharge of sudden failure is recorded three times faster than the gradual failure mode. Another achievement that should be mentioned is that although large oscillating periods carry a higher risk of cracking of the dam’s body, smaller periods propagate the resulting cracks more rapidly.Keywords: Flood riskfluid–particle interactionshydraulic modelslakes and reservoirsRANS models Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementAll numerical data presented in this study are available from the corresponding author upon reasonable request. Supplementary studies are available to the public at the following address in the doctoral dissertation of the first author of the article: https://hdl.handle.net/11511/93072\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2259858\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2259858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Finite volume analysis of dam breaking subjected to earthquake accelerations
AbstractBecause of the complexity of the dam failure mechanism due to earthquakes that occur under the simultaneous influence of hydraulic and seismic forces, a single model has not been obtained so far and this study was conducted to achieve this model. In this paper, dam failure models including both sudden and gradual failure have been investigated using volume of fluid techniques (VOF) to simulate water fluxes, general moving object (GMO) to simulate moving bodies, and the fluid–structure interaction model for finite volume analysis. In order to be sure of the accuracy of the results, before examining the failure mechanisms, the verifications of utilized methods in the case of dam failure were proven using experimental and numerical studies from literature. The Koyna Dam earthquake of magnitude 6.5 (11 December 1967) is investigated as a test case. Comparison of the output discharges due to dam failure in the two failure models reveals that the peak discharge of sudden failure is recorded three times faster than the gradual failure mode. Another achievement that should be mentioned is that although large oscillating periods carry a higher risk of cracking of the dam’s body, smaller periods propagate the resulting cracks more rapidly.Keywords: Flood riskfluid–particle interactionshydraulic modelslakes and reservoirsRANS models Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementAll numerical data presented in this study are available from the corresponding author upon reasonable request. Supplementary studies are available to the public at the following address in the doctoral dissertation of the first author of the article: https://hdl.handle.net/11511/93072
期刊介绍:
The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.