{"title":"相等定义的半群类","authors":"Peter M. Higgins, Marcel Jackson","doi":"10.1007/s00233-023-10397-4","DOIUrl":null,"url":null,"abstract":"Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${\\mathscr {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${\\mathscr {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> is free of the $$\\forall $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>∀</mml:mo> </mml:math> quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(\\forall \\cdots )(\\exists \\cdots )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> equation systems nor $$(\\exists \\cdots )(\\forall \\cdots )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> systems suffice.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equationally defined classes of semigroups\",\"authors\":\"Peter M. Higgins, Marcel Jackson\",\"doi\":\"10.1007/s00233-023-10397-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${\\\\mathscr {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${\\\\mathscr {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> is free of the $$\\\\forall $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>∀</mml:mo> </mml:math> quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(\\\\forall \\\\cdots )(\\\\exists \\\\cdots )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> equation systems nor $$(\\\\exists \\\\cdots )(\\\\forall \\\\cdots )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> systems suffice.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10397-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00233-023-10397-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${\mathscr {C}}$$ C of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${\mathscr {C}}$$ C is free of the $$\forall $$ ∀ quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(\forall \cdots )(\exists \cdots )$$ (∀⋯)(∃⋯) equation systems nor $$(\exists \cdots )(\forall \cdots )$$ (∃⋯)(∀⋯) systems suffice.