相等定义的半群类

Pub Date : 2023-11-03 DOI:10.1007/s00233-023-10397-4
Peter M. Higgins, Marcel Jackson
{"title":"相等定义的半群类","authors":"Peter M. Higgins, Marcel Jackson","doi":"10.1007/s00233-023-10397-4","DOIUrl":null,"url":null,"abstract":"Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${\\mathscr {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${\\mathscr {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> is free of the $$\\forall $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>∀</mml:mo> </mml:math> quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(\\forall \\cdots )(\\exists \\cdots )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> equation systems nor $$(\\exists \\cdots )(\\forall \\cdots )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> systems suffice.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equationally defined classes of semigroups\",\"authors\":\"Peter M. Higgins, Marcel Jackson\",\"doi\":\"10.1007/s00233-023-10397-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${\\\\mathscr {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${\\\\mathscr {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> is free of the $$\\\\forall $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>∀</mml:mo> </mml:math> quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(\\\\forall \\\\cdots )(\\\\exists \\\\cdots )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> equation systems nor $$(\\\\exists \\\\cdots )(\\\\forall \\\\cdots )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> systems suffice.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10397-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00233-023-10397-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在半群的背景下,我们应用了作者的论文“由方程定义的代数”(Higgins和Jackson in J Algebra 555:131-156, 2020)中的主要定理,即代数的一个初等类$${\mathscr {C}}$$ C在取直积和同态象下是封闭的,它是由方程组定义的。我们证明了Birkhoff定理的对偶:如果该类在包含半群的取下也是闭的,则$${\mathscr {C}}$$ C的某些方程的基不包含$$\forall $$∀量词。通过与自由半群上的理性约束方程组的联系,我们还观察到一类由半群满足的方程组的可决性。给出了一些ehp类的例子,其中$$(\forall \cdots )(\exists \cdots )$$(∀⋯)(∃⋯)方程系统和$$(\exists \cdots )(\forall \cdots )$$(∃⋯)(∀⋯)系统都不够用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equationally defined classes of semigroups
Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${\mathscr {C}}$$ C of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${\mathscr {C}}$$ C is free of the $$\forall $$ quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(\forall \cdots )(\exists \cdots )$$ ( ) ( ) equation systems nor $$(\exists \cdots )(\forall \cdots )$$ ( ) ( ) systems suffice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信