超离散饥饿Toda方程和特征值在最小加代数

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Masafumi Kan, Akiko Fukuda, Sennosuke Watanabe
{"title":"超离散饥饿Toda方程和特征值在最小加代数","authors":"Masafumi Kan, Akiko Fukuda, Sennosuke Watanabe","doi":"10.1080/10236198.2023.2277714","DOIUrl":null,"url":null,"abstract":"The recursion formula of the quotient difference algorithm for computing matrix eigenvalues corresponds with the discrete Toda equation, which is well-known in discrete integrable systems. Previous studies have revealed that the ultradiscrete Toda equation computes eigenvalues of tridiagonal matrices over the min-plus algebra. The min-plus algebra is a commutative semiring in which minimum and plus operations are introduced into the union of the set of real numbers and positive infinity. The discrete hungry Toda equation, which is a generalization of the discrete Toda equation, can compute the eigenvalues of lower Hessenberg banded matrices. This study focuses on the ultradiscrete hungry Toda equation and show that the time evolution of the equation yields the eigenvalues of lower Hessenberg banded matrices over the min-plus algebra.","PeriodicalId":15616,"journal":{"name":"Journal of Difference Equations and Applications","volume":"32 16","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultradiscrete hungry Toda equation and eigenvalues over min-plus algebra\",\"authors\":\"Masafumi Kan, Akiko Fukuda, Sennosuke Watanabe\",\"doi\":\"10.1080/10236198.2023.2277714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recursion formula of the quotient difference algorithm for computing matrix eigenvalues corresponds with the discrete Toda equation, which is well-known in discrete integrable systems. Previous studies have revealed that the ultradiscrete Toda equation computes eigenvalues of tridiagonal matrices over the min-plus algebra. The min-plus algebra is a commutative semiring in which minimum and plus operations are introduced into the union of the set of real numbers and positive infinity. The discrete hungry Toda equation, which is a generalization of the discrete Toda equation, can compute the eigenvalues of lower Hessenberg banded matrices. This study focuses on the ultradiscrete hungry Toda equation and show that the time evolution of the equation yields the eigenvalues of lower Hessenberg banded matrices over the min-plus algebra.\",\"PeriodicalId\":15616,\"journal\":{\"name\":\"Journal of Difference Equations and Applications\",\"volume\":\"32 16\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Difference Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10236198.2023.2277714\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Difference Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2277714","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

计算矩阵特征值的商差分算法的递推公式对应于离散可积系统中众所周知的离散Toda方程。以往的研究表明,超离散Toda方程可以计算min +代数上的三对角矩阵的特征值。最小加代数是一个交换半环,在这个半环中,在实数集与正无穷的并集中引入了最小和加运算。离散饥饿Toda方程是对离散Toda方程的推广,它可以计算下Hessenberg带状矩阵的特征值。本文研究了超离散饥饿Toda方程,并证明了该方程的时间演化产生了下Hessenberg带状矩阵在min-plus代数上的特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultradiscrete hungry Toda equation and eigenvalues over min-plus algebra
The recursion formula of the quotient difference algorithm for computing matrix eigenvalues corresponds with the discrete Toda equation, which is well-known in discrete integrable systems. Previous studies have revealed that the ultradiscrete Toda equation computes eigenvalues of tridiagonal matrices over the min-plus algebra. The min-plus algebra is a commutative semiring in which minimum and plus operations are introduced into the union of the set of real numbers and positive infinity. The discrete hungry Toda equation, which is a generalization of the discrete Toda equation, can compute the eigenvalues of lower Hessenberg banded matrices. This study focuses on the ultradiscrete hungry Toda equation and show that the time evolution of the equation yields the eigenvalues of lower Hessenberg banded matrices over the min-plus algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
70
审稿时长
4-8 weeks
期刊介绍: Journal of Difference Equations and Applications presents state-of-the-art papers on difference equations and discrete dynamical systems and the academic, pure and applied problems in which they arise. The Journal is composed of original research, expository and review articles, and papers that present novel concepts in application and techniques. The scope of the Journal includes all areas in mathematics that contain significant theory or applications in difference equations or discrete dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信