{"title":"超离散饥饿Toda方程和特征值在最小加代数","authors":"Masafumi Kan, Akiko Fukuda, Sennosuke Watanabe","doi":"10.1080/10236198.2023.2277714","DOIUrl":null,"url":null,"abstract":"The recursion formula of the quotient difference algorithm for computing matrix eigenvalues corresponds with the discrete Toda equation, which is well-known in discrete integrable systems. Previous studies have revealed that the ultradiscrete Toda equation computes eigenvalues of tridiagonal matrices over the min-plus algebra. The min-plus algebra is a commutative semiring in which minimum and plus operations are introduced into the union of the set of real numbers and positive infinity. The discrete hungry Toda equation, which is a generalization of the discrete Toda equation, can compute the eigenvalues of lower Hessenberg banded matrices. This study focuses on the ultradiscrete hungry Toda equation and show that the time evolution of the equation yields the eigenvalues of lower Hessenberg banded matrices over the min-plus algebra.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultradiscrete hungry Toda equation and eigenvalues over min-plus algebra\",\"authors\":\"Masafumi Kan, Akiko Fukuda, Sennosuke Watanabe\",\"doi\":\"10.1080/10236198.2023.2277714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recursion formula of the quotient difference algorithm for computing matrix eigenvalues corresponds with the discrete Toda equation, which is well-known in discrete integrable systems. Previous studies have revealed that the ultradiscrete Toda equation computes eigenvalues of tridiagonal matrices over the min-plus algebra. The min-plus algebra is a commutative semiring in which minimum and plus operations are introduced into the union of the set of real numbers and positive infinity. The discrete hungry Toda equation, which is a generalization of the discrete Toda equation, can compute the eigenvalues of lower Hessenberg banded matrices. This study focuses on the ultradiscrete hungry Toda equation and show that the time evolution of the equation yields the eigenvalues of lower Hessenberg banded matrices over the min-plus algebra.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10236198.2023.2277714\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2277714","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultradiscrete hungry Toda equation and eigenvalues over min-plus algebra
The recursion formula of the quotient difference algorithm for computing matrix eigenvalues corresponds with the discrete Toda equation, which is well-known in discrete integrable systems. Previous studies have revealed that the ultradiscrete Toda equation computes eigenvalues of tridiagonal matrices over the min-plus algebra. The min-plus algebra is a commutative semiring in which minimum and plus operations are introduced into the union of the set of real numbers and positive infinity. The discrete hungry Toda equation, which is a generalization of the discrete Toda equation, can compute the eigenvalues of lower Hessenberg banded matrices. This study focuses on the ultradiscrete hungry Toda equation and show that the time evolution of the equation yields the eigenvalues of lower Hessenberg banded matrices over the min-plus algebra.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.