{"title":"金属-酸串联催化糠醛加氢重排制C5环化合物的研究进展","authors":"Xiang Li, Qiang Deng","doi":"10.1007/s12209-023-00367-w","DOIUrl":null,"url":null,"abstract":"Abstract Hydrogenative rearrangement of biomass-derived furfurals (furfural and 5-hydroxymethyl furfural) to C 5 cyclic compounds (such as cyclopentanones and cyclopentanols) offers an expedient reaction route for acquiring O-containing value-added chemicals thereby replacing the traditional petroleum-based approaches. The scope for developing efficient bifunctional catalysts and establishing mild reaction conditions for upgrading furfurals to cyclic compounds has stimulated immense deliberation in recent years. Extensive efforts have been made toward developing catalysts for multiple tandem conversions, including those with various metals and supports. In this scientific review, we aim to summarize the research progress on the synergistic effect of the metal–acid sites, including simple metal–supported acidic supports, adjacent metal acid sites–supported catalysts, and in situ H 2 -modified bifunctional catalysts. Distinctively, the catalytic performance, catalytic mechanism, and future challenges for the hydrogenative rearrangement are elaborated in detail. The methods highlighted in this review promote the development of C 5 cyclic compound synthesis and provide insights to regulate bifunctional catalysis for other applications.","PeriodicalId":23296,"journal":{"name":"Transactions of Tianjin University","volume":"39 4","pages":"0"},"PeriodicalIF":6.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on Metal–Acid Tandem Catalysis for Hydrogenative Rearrangement of Furfurals to C5 Cyclic Compounds\",\"authors\":\"Xiang Li, Qiang Deng\",\"doi\":\"10.1007/s12209-023-00367-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydrogenative rearrangement of biomass-derived furfurals (furfural and 5-hydroxymethyl furfural) to C 5 cyclic compounds (such as cyclopentanones and cyclopentanols) offers an expedient reaction route for acquiring O-containing value-added chemicals thereby replacing the traditional petroleum-based approaches. The scope for developing efficient bifunctional catalysts and establishing mild reaction conditions for upgrading furfurals to cyclic compounds has stimulated immense deliberation in recent years. Extensive efforts have been made toward developing catalysts for multiple tandem conversions, including those with various metals and supports. In this scientific review, we aim to summarize the research progress on the synergistic effect of the metal–acid sites, including simple metal–supported acidic supports, adjacent metal acid sites–supported catalysts, and in situ H 2 -modified bifunctional catalysts. Distinctively, the catalytic performance, catalytic mechanism, and future challenges for the hydrogenative rearrangement are elaborated in detail. The methods highlighted in this review promote the development of C 5 cyclic compound synthesis and provide insights to regulate bifunctional catalysis for other applications.\",\"PeriodicalId\":23296,\"journal\":{\"name\":\"Transactions of Tianjin University\",\"volume\":\"39 4\",\"pages\":\"0\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Tianjin University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12209-023-00367-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Tianjin University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12209-023-00367-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Review on Metal–Acid Tandem Catalysis for Hydrogenative Rearrangement of Furfurals to C5 Cyclic Compounds
Abstract Hydrogenative rearrangement of biomass-derived furfurals (furfural and 5-hydroxymethyl furfural) to C 5 cyclic compounds (such as cyclopentanones and cyclopentanols) offers an expedient reaction route for acquiring O-containing value-added chemicals thereby replacing the traditional petroleum-based approaches. The scope for developing efficient bifunctional catalysts and establishing mild reaction conditions for upgrading furfurals to cyclic compounds has stimulated immense deliberation in recent years. Extensive efforts have been made toward developing catalysts for multiple tandem conversions, including those with various metals and supports. In this scientific review, we aim to summarize the research progress on the synergistic effect of the metal–acid sites, including simple metal–supported acidic supports, adjacent metal acid sites–supported catalysts, and in situ H 2 -modified bifunctional catalysts. Distinctively, the catalytic performance, catalytic mechanism, and future challenges for the hydrogenative rearrangement are elaborated in detail. The methods highlighted in this review promote the development of C 5 cyclic compound synthesis and provide insights to regulate bifunctional catalysis for other applications.
期刊介绍:
"Transactions of Tianjin University" is a peer-reviewed, interdisciplinary journal that showcases cutting-edge research in the areas of energy generation, storage, and application, which are of significant interest to both nations and society. The journal is dedicated to publishing a diverse array of research article types, such as Letters, Articles, Perspectives, Reviews, and Viewpoints, to provide a comprehensive platform for scholarly exchange.
The journal covers a wide range of topics that are central to the global energy landscape, including but not limited to solar energy utilization, hydrogen production and storage, CO2 capture and conversion, fuel cells, batteries and supercapacitors, catalysis, clean utilization of coal and oil, biofuels, and energy policy. By addressing these critical areas, "Transactions of Tianjin University" contributes to the advancement of sustainable energy solutions and the promotion of environmental stewardship, making it an important resource for researchers, policymakers, and industry professionals in the energy sector.