次线性期望下无可积条件下的稳健$$\alpha $$ -稳定中心极限定理

Pub Date : 2023-11-03 DOI:10.1007/s10959-023-01298-x
Lianzi Jiang, Gechun Liang
{"title":"次线性期望下无可积条件下的稳健$$\\alpha $$ -稳定中心极限定理","authors":"Lianzi Jiang, Gechun Liang","doi":"10.1007/s10959-023-01298-x","DOIUrl":null,"url":null,"abstract":"Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable central limit theorem under sublinear expectation. Specifically, for $$\\alpha \\in (0,1]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , we prove that the normalized sums of i.i.d. non-integrable random variables $$\\big \\{n^{-\\frac{1}{\\alpha }}\\sum _{i=1}^{n}Z_{i}\\big \\}_{n=1}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>α</mml:mi> </mml:mfrac> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>Z</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:mrow> </mml:math> converge in law to $${\\tilde{\\zeta }}_{1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> </mml:msub> </mml:math> , where $$({\\tilde{\\zeta }}_{t})_{t\\in [0,1]}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> </mml:math> is a multidimensional nonlinear symmetric $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process with jump uncertainty set $${\\mathcal {L}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>L</mml:mi> </mml:math> . The limiting $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\\begin{aligned} \\left\\{ \\begin{array}{l} \\displaystyle \\partial _{t}u(t,x)-\\sup \\limits _{F_{\\mu }\\in {\\mathcal {L}}}\\left\\{ \\int _{{\\mathbb {R}}^{d}}\\delta _{\\lambda }^{\\alpha }u(t,x)F_{\\mu }(d\\lambda )\\right\\} =0,\\\\ \\displaystyle u(0,x)=\\phi (x),\\quad \\forall (t,x)\\in [0,1]\\times {\\mathbb {R}}^{d}, \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:munder> <mml:mo>sup</mml:mo> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:mi>L</mml:mi> </mml:mrow> </mml:munder> <mml:mfenced> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:msub> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mo>∀</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where $$\\begin{aligned} \\delta _{\\lambda }^{\\alpha }u(t,x):=\\left\\{ \\begin{array}{ll} u(t,x+\\lambda )-u(t,x)-\\langle D_{x}u(t,x),\\lambda \\mathbbm {1}_{\\{|\\lambda |\\le 1\\}}\\rangle , &amp;{}\\quad \\alpha =1,\\\\ u(t,x+\\lambda )-u(t,x), &amp;{}\\quad \\alpha \\in (0,1). \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mo>⟨</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>λ</mml:mi> <mml:msub> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>|</mml:mo> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:msub> <mml:mo>⟩</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process and a truncation technique to estimate the corresponding $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust $$\\\\alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition\",\"authors\":\"Lianzi Jiang, Gechun Liang\",\"doi\":\"10.1007/s10959-023-01298-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable central limit theorem under sublinear expectation. Specifically, for $$\\\\alpha \\\\in (0,1]$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , we prove that the normalized sums of i.i.d. non-integrable random variables $$\\\\big \\\\{n^{-\\\\frac{1}{\\\\alpha }}\\\\sum _{i=1}^{n}Z_{i}\\\\big \\\\}_{n=1}^{\\\\infty }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>α</mml:mi> </mml:mfrac> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>Z</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:mrow> </mml:math> converge in law to $${\\\\tilde{\\\\zeta }}_{1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> </mml:msub> </mml:math> , where $$({\\\\tilde{\\\\zeta }}_{t})_{t\\\\in [0,1]}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> </mml:math> is a multidimensional nonlinear symmetric $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable process with jump uncertainty set $${\\\\mathcal {L}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>L</mml:mi> </mml:math> . The limiting $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{l} \\\\displaystyle \\\\partial _{t}u(t,x)-\\\\sup \\\\limits _{F_{\\\\mu }\\\\in {\\\\mathcal {L}}}\\\\left\\\\{ \\\\int _{{\\\\mathbb {R}}^{d}}\\\\delta _{\\\\lambda }^{\\\\alpha }u(t,x)F_{\\\\mu }(d\\\\lambda )\\\\right\\\\} =0,\\\\\\\\ \\\\displaystyle u(0,x)=\\\\phi (x),\\\\quad \\\\forall (t,x)\\\\in [0,1]\\\\times {\\\\mathbb {R}}^{d}, \\\\end{array} \\\\right. \\\\end{aligned}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:munder> <mml:mo>sup</mml:mo> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:mi>L</mml:mi> </mml:mrow> </mml:munder> <mml:mfenced> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:msub> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mo>∀</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where $$\\\\begin{aligned} \\\\delta _{\\\\lambda }^{\\\\alpha }u(t,x):=\\\\left\\\\{ \\\\begin{array}{ll} u(t,x+\\\\lambda )-u(t,x)-\\\\langle D_{x}u(t,x),\\\\lambda \\\\mathbbm {1}_{\\\\{|\\\\lambda |\\\\le 1\\\\}}\\\\rangle , &amp;{}\\\\quad \\\\alpha =1,\\\\\\\\ u(t,x+\\\\lambda )-u(t,x), &amp;{}\\\\quad \\\\alpha \\\\in (0,1). \\\\end{array} \\\\right. \\\\end{aligned}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mo>⟨</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>λ</mml:mi> <mml:msub> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>|</mml:mo> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:msub> <mml:mo>⟩</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable process and a truncation technique to estimate the corresponding $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-023-01298-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-023-01298-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文通过放宽次线性期望下稳健$$\alpha $$ α -稳定中心极限定理的可积性条件,填补了文献的空白。具体而言,对于$$\alpha \in (0,1]$$ α∈(0,1),证明了i.i.d不可积随机变量$$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ n- 1 α∑i = 1 n zi n = 1{∞的归一化和规律收敛于}$${\tilde{\zeta }}_{1}$$ ζ 1,其中$$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ (ζ t) t∈[0,1]是一个具有跳跃不确定性集$${\mathcal {L}}$$ L的多维非线性对称$$\alpha $$ α稳定过程。极限$$\alpha $$ α稳定过程进一步表征为一个完全非线性的偏积分微分方程(PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$∂t u (t, x) - sup F μ∈L∫R d δ λ α u (t, x) F μ (d λ) = 0, u (0, x) = ϕ (x),∀(t, x)∈[0,1]× R d,其中$$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δ λ α u (t, x):= u (t, x + λ) - u (t, x) -⟨dx u (t, x), λ 1 {| λ |≤1}⟩,α = 1, u (t, x + λ) - u (t, x), α∈(0,1)。本研究中使用的方法涉及到几种工具的利用,包括弱收敛方法来获得极限过程,非线性$$\alpha $$ α稳定过程的l - khintchine表示和截断技术来估计相应的$$\alpha $$ α稳定l测量。此外,本文还给出了证明上述全非线性PIDE解的存在性的概率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Robust $$\alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition
Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\alpha $$ α -stable central limit theorem under sublinear expectation. Specifically, for $$\alpha \in (0,1]$$ α ( 0 , 1 ] , we prove that the normalized sums of i.i.d. non-integrable random variables $$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ { n - 1 α i = 1 n Z i } n = 1 converge in law to $${\tilde{\zeta }}_{1}$$ ζ ~ 1 , where $$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ ( ζ ~ t ) t [ 0 , 1 ] is a multidimensional nonlinear symmetric $$\alpha $$ α -stable process with jump uncertainty set $${\mathcal {L}}$$ L . The limiting $$\alpha $$ α -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$ t u ( t , x ) - sup F μ L R d δ λ α u ( t , x ) F μ ( d λ ) = 0 , u ( 0 , x ) = ϕ ( x ) , ( t , x ) [ 0 , 1 ] × R d , where $$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δ λ α u ( t , x ) : = u ( t , x + λ ) - u ( t , x ) - D x u ( t , x ) , λ 1 { | λ | 1 } , α = 1 , u ( t , x + λ ) - u ( t , x ) , α ( 0 , 1 ) . The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\alpha $$ α -stable process and a truncation technique to estimate the corresponding $$\alpha $$ α -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信