{"title":"两两比较矩阵精度的比较研究","authors":"Bice Cavallo, Jir̆í Mazurek, Jaroslav Ramík","doi":"10.1007/s10700-023-09416-4","DOIUrl":null,"url":null,"abstract":"Abstract Pairwise comparisons have been a long-standing technique for comparing alternatives/criteria and their role has been pivotal in the development of modern decision-making methods such as the Analytic Hierarchy/Network Process (AHP/ANP), the Best-Worst method (BWM), PROMETHEE and many others. Pairwise comparisons can be performed within several frameworks such as multiplicative, additive and fuzzy representations of preferences, which are particular instances of a more general framework based on Abelian linearly ordered groups. Though multiplicative, additive and fuzzy representations of preferences are widely used in practice, it is unknown whether decision makers are equally precise in the three aforementioned representations when they measure objective data. Therefore, the aim of this paper is to design, carry out and analyse an experiment with over 200 respondents (undergraduate university students) from two countries, Czechia and Italy, to compare precision of the respondents in all three representations. In the experiment, respondents pairwise compared (by approximation) the areas of four geometric figures and then, the imprecision of their assessments was measured by computing the distance with the exact pairwise comparisons. We grouped the respondents in such a way that each participant was allowed to deal with a unique type of representation. The outcomes of the experiment indicate that the multiplicative approach is the most precise.","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":"24 33","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on precision of pairwise comparison matrices\",\"authors\":\"Bice Cavallo, Jir̆í Mazurek, Jaroslav Ramík\",\"doi\":\"10.1007/s10700-023-09416-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pairwise comparisons have been a long-standing technique for comparing alternatives/criteria and their role has been pivotal in the development of modern decision-making methods such as the Analytic Hierarchy/Network Process (AHP/ANP), the Best-Worst method (BWM), PROMETHEE and many others. Pairwise comparisons can be performed within several frameworks such as multiplicative, additive and fuzzy representations of preferences, which are particular instances of a more general framework based on Abelian linearly ordered groups. Though multiplicative, additive and fuzzy representations of preferences are widely used in practice, it is unknown whether decision makers are equally precise in the three aforementioned representations when they measure objective data. Therefore, the aim of this paper is to design, carry out and analyse an experiment with over 200 respondents (undergraduate university students) from two countries, Czechia and Italy, to compare precision of the respondents in all three representations. In the experiment, respondents pairwise compared (by approximation) the areas of four geometric figures and then, the imprecision of their assessments was measured by computing the distance with the exact pairwise comparisons. We grouped the respondents in such a way that each participant was allowed to deal with a unique type of representation. The outcomes of the experiment indicate that the multiplicative approach is the most precise.\",\"PeriodicalId\":55131,\"journal\":{\"name\":\"Fuzzy Optimization and Decision Making\",\"volume\":\"24 33\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Optimization and Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10700-023-09416-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10700-023-09416-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A comparative study on precision of pairwise comparison matrices
Abstract Pairwise comparisons have been a long-standing technique for comparing alternatives/criteria and their role has been pivotal in the development of modern decision-making methods such as the Analytic Hierarchy/Network Process (AHP/ANP), the Best-Worst method (BWM), PROMETHEE and many others. Pairwise comparisons can be performed within several frameworks such as multiplicative, additive and fuzzy representations of preferences, which are particular instances of a more general framework based on Abelian linearly ordered groups. Though multiplicative, additive and fuzzy representations of preferences are widely used in practice, it is unknown whether decision makers are equally precise in the three aforementioned representations when they measure objective data. Therefore, the aim of this paper is to design, carry out and analyse an experiment with over 200 respondents (undergraduate university students) from two countries, Czechia and Italy, to compare precision of the respondents in all three representations. In the experiment, respondents pairwise compared (by approximation) the areas of four geometric figures and then, the imprecision of their assessments was measured by computing the distance with the exact pairwise comparisons. We grouped the respondents in such a way that each participant was allowed to deal with a unique type of representation. The outcomes of the experiment indicate that the multiplicative approach is the most precise.
期刊介绍:
The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty.
The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.