多壁碳纳米管对curau天然纤维增强复合材料力学和热性能的影响

C Pub Date : 2023-11-03 DOI:10.3390/c9040102
Jorge S. S. Neto, Daniel K. K. Cavalcanti, Luiz E. da Cunha Ferro, Henrique F. M. de Queiroz, Ricardo A. A. Aguiar, Mariana D. Banea
{"title":"多壁碳纳米管对curau<s:1>天然纤维增强复合材料力学和热性能的影响","authors":"Jorge S. S. Neto, Daniel K. K. Cavalcanti, Luiz E. da Cunha Ferro, Henrique F. M. de Queiroz, Ricardo A. A. Aguiar, Mariana D. Banea","doi":"10.3390/c9040102","DOIUrl":null,"url":null,"abstract":"The main objective of this research centered on investigating the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical and thermal properties of curauá-fiber-reinforced composites. The MWCNTs were added either to the fiber surface or into the resin matrix as the second reinforcing phase. The MWCNT-modified curauá fibers as well as raw fibers were characterized using a single-fiber tensile test, TGA, and FTIR analysis. Further, different composite samples, namely, pure curauá, (curauá + MWCNTs) + resin and curauá+ (resin + MWCNTs), were manufactured via compression molding and tested to determine their mechanical and thermal properties. Scanning electron microscopy (SEM) analysis was used to examine the surfaces of the tested fibers. It was found that the addition of MWCNTs to the curauá fibers resulted in positive effects (an enhancement in properties was found for the MWCNT-modified fibers and their composites). The addition of MWCNTs also increased the thermal stability of the natural fibers and composites.","PeriodicalId":9397,"journal":{"name":"C","volume":"11 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Multi-Walled Carbon Nanotubes on the Mechanical and Thermal Properties of Curauá Natural-Fiber-Reinforced Composites\",\"authors\":\"Jorge S. S. Neto, Daniel K. K. Cavalcanti, Luiz E. da Cunha Ferro, Henrique F. M. de Queiroz, Ricardo A. A. Aguiar, Mariana D. Banea\",\"doi\":\"10.3390/c9040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this research centered on investigating the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical and thermal properties of curauá-fiber-reinforced composites. The MWCNTs were added either to the fiber surface or into the resin matrix as the second reinforcing phase. The MWCNT-modified curauá fibers as well as raw fibers were characterized using a single-fiber tensile test, TGA, and FTIR analysis. Further, different composite samples, namely, pure curauá, (curauá + MWCNTs) + resin and curauá+ (resin + MWCNTs), were manufactured via compression molding and tested to determine their mechanical and thermal properties. Scanning electron microscopy (SEM) analysis was used to examine the surfaces of the tested fibers. It was found that the addition of MWCNTs to the curauá fibers resulted in positive effects (an enhancement in properties was found for the MWCNT-modified fibers and their composites). The addition of MWCNTs also increased the thermal stability of the natural fibers and composites.\",\"PeriodicalId\":9397,\"journal\":{\"name\":\"C\",\"volume\":\"11 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/c9040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c9040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是研究多壁碳纳米管(MWCNTs)的加入对curauá-fiber-reinforced复合材料力学和热性能的影响。将MWCNTs作为第二增强相添加到纤维表面或树脂基体中。mwcnts改性的curau纤维和原纤维通过单纤维拉伸测试、TGA和FTIR分析进行了表征。此外,通过压缩成型制备了不同的复合材料样品,即纯curau、(curau + MWCNTs) +树脂和curau +(树脂+ MWCNTs),并测试了它们的力学和热性能。用扫描电子显微镜(SEM)分析了被测纤维的表面。研究发现,在curau纤维中添加MWCNTs产生了积极的效果(MWCNTs改性纤维及其复合材料的性能得到了增强)。MWCNTs的加入也提高了天然纤维和复合材料的热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Multi-Walled Carbon Nanotubes on the Mechanical and Thermal Properties of Curauá Natural-Fiber-Reinforced Composites
The main objective of this research centered on investigating the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical and thermal properties of curauá-fiber-reinforced composites. The MWCNTs were added either to the fiber surface or into the resin matrix as the second reinforcing phase. The MWCNT-modified curauá fibers as well as raw fibers were characterized using a single-fiber tensile test, TGA, and FTIR analysis. Further, different composite samples, namely, pure curauá, (curauá + MWCNTs) + resin and curauá+ (resin + MWCNTs), were manufactured via compression molding and tested to determine their mechanical and thermal properties. Scanning electron microscopy (SEM) analysis was used to examine the surfaces of the tested fibers. It was found that the addition of MWCNTs to the curauá fibers resulted in positive effects (an enhancement in properties was found for the MWCNT-modified fibers and their composites). The addition of MWCNTs also increased the thermal stability of the natural fibers and composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
C
C
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信