Caputo意义下Omicron变异的分数阶SQIRV数学模型

IF 0.6 Q3 MATHEMATICS
Pushpendra Kumar, S. Dickson, S. Padmasekaran
{"title":"Caputo意义下Omicron变异的分数阶SQIRV数学模型","authors":"Pushpendra Kumar, S. Dickson, S. Padmasekaran","doi":"10.37256/cm.4420232373","DOIUrl":null,"url":null,"abstract":"In this paper, for the Omicron Variant, a mathematical model of epidemic SQIRV fractional order is constructed. This model's positivity and boundedness have been investigated and confirmed. In the sense of the Caputo derivative, this model's existence and uniqueness are investigated. The reproduction number $R_0$, which is used to determine whether or not the disease would spread further, is calculated to demonstrate that infection steady-state solutions are asymptotically stable. Different orders of fractional derivatives are used to explore the numerical simulations.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"15 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Order SQIRV Mathematical Model for Omicron Variant in the Caputo Sense\",\"authors\":\"Pushpendra Kumar, S. Dickson, S. Padmasekaran\",\"doi\":\"10.37256/cm.4420232373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for the Omicron Variant, a mathematical model of epidemic SQIRV fractional order is constructed. This model's positivity and boundedness have been investigated and confirmed. In the sense of the Caputo derivative, this model's existence and uniqueness are investigated. The reproduction number $R_0$, which is used to determine whether or not the disease would spread further, is calculated to demonstrate that infection steady-state solutions are asymptotically stable. Different orders of fractional derivatives are used to explore the numerical simulations.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对Omicron变异,建立了流行病SQIRV分数阶的数学模型。研究并证实了该模型的正性和有界性。在Caputo导数意义下,研究了该模型的存在性和唯一性。计算用于确定疾病是否会进一步传播的繁殖数R_0,以证明感染稳态解是渐近稳定的。采用不同阶数的分数阶导数进行数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Order SQIRV Mathematical Model for Omicron Variant in the Caputo Sense
In this paper, for the Omicron Variant, a mathematical model of epidemic SQIRV fractional order is constructed. This model's positivity and boundedness have been investigated and confirmed. In the sense of the Caputo derivative, this model's existence and uniqueness are investigated. The reproduction number $R_0$, which is used to determine whether or not the disease would spread further, is calculated to demonstrate that infection steady-state solutions are asymptotically stable. Different orders of fractional derivatives are used to explore the numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信