用稻捆的截面表示ABA

IF 0.7 Q2 MATHEMATICS
R. Chudamani, K. Rama Prasad, K. Krishna Rao, U.M. Swamy
{"title":"用稻捆的截面表示ABA","authors":"R. Chudamani, K. Rama Prasad, K. Krishna Rao, U.M. Swamy","doi":"10.28924/2291-8639-21-2023-105","DOIUrl":null,"url":null,"abstract":"An Almost Boolean Algebra (A, ∧, ∨, 0) (abbreviated as ABA) is an Almost Distributive Lattice (ADL) with a maximal element in which for any x∈A, there exists y∈A such that x∧y = 0 and x∨y is a maximal element in A. If (S, Π, X) is a sheaf of nontrivial discrete ADL’s over a Boolean space such that for any global section f, support of f is open, then it is proved that the set Γ(X, S) of all global sections is an ABA. Conversely, it is proved that every ABA is isomorphic to the ADL of global sections of a suitable sheaf of discrete ADL’s over a Boolean space.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of ABA’s by Sections of Sheaves\",\"authors\":\"R. Chudamani, K. Rama Prasad, K. Krishna Rao, U.M. Swamy\",\"doi\":\"10.28924/2291-8639-21-2023-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Almost Boolean Algebra (A, ∧, ∨, 0) (abbreviated as ABA) is an Almost Distributive Lattice (ADL) with a maximal element in which for any x∈A, there exists y∈A such that x∧y = 0 and x∨y is a maximal element in A. If (S, Π, X) is a sheaf of nontrivial discrete ADL’s over a Boolean space such that for any global section f, support of f is open, then it is proved that the set Γ(X, S) of all global sections is an ABA. Conversely, it is proved that every ABA is isomorphic to the ADL of global sections of a suitable sheaf of discrete ADL’s over a Boolean space.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

几乎一个布尔代数(A、∧∨,0)(缩写为阿坝)几乎是一个分配格(ADL)任何x∈最大元素,存在y∈这样∧y = 0, x∨如果y是一个最大的元素(SΠx)是重要的离散分布的一捆在一个布尔值空间,这样任何全球部分f, f是开放的支持,那么就证明Γ集(x, S)的全球部分是阿坝。反过来,证明了每个ABA都是布尔空间上一组合适的离散ADL的全局截面的ADL同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of ABA’s by Sections of Sheaves
An Almost Boolean Algebra (A, ∧, ∨, 0) (abbreviated as ABA) is an Almost Distributive Lattice (ADL) with a maximal element in which for any x∈A, there exists y∈A such that x∧y = 0 and x∨y is a maximal element in A. If (S, Π, X) is a sheaf of nontrivial discrete ADL’s over a Boolean space such that for any global section f, support of f is open, then it is proved that the set Γ(X, S) of all global sections is an ABA. Conversely, it is proved that every ABA is isomorphic to the ADL of global sections of a suitable sheaf of discrete ADL’s over a Boolean space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信