WB评分:在日益嘈杂的数据集中选择视觉分类器的一种新方法

Wagner S. Billa, Rogério G. Negri, Leonardo B. L. Santos
{"title":"WB评分:在日益嘈杂的数据集中选择视觉分类器的一种新方法","authors":"Wagner S. Billa, Rogério G. Negri, Leonardo B. L. Santos","doi":"10.3390/eng4040142","DOIUrl":null,"url":null,"abstract":"This article addresses the challenges of selecting robust classifiers with increasing noise levels in real-world scenarios. We propose the WB Score methodology, which enables the identification of reliable classifiers for deployment in noisy environments. The methodology addresses four significant challenges that are commonly encountered: (i) Ensuring classifiers possess robustness to noise; (ii) Overcoming the difficulty of obtaining representative data that captures real-world noise; (iii) Addressing the complexity of detecting noise, making it challenging to differentiate it from natural variations in the data; and (iv) Meeting the requirement for classifiers capable of efficiently handling noise, allowing prompt responses for decision-making. WB Score provides a comprehensive approach for classifier assessment and selection to address these challenges. We analyze five classic datasets and one customized flooding dataset in São Paulo. The results demonstrate the practical effect of using the WB Score methodology is the enhanced ability to select robust classifiers for datasets in noisy real-world scenarios. Compared with similar techniques, the improvement centers around providing a visual and intuitive output, enhancing the understanding of classifier resilience against noise, and streamlining the decision-making process.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WB Score: A Novel Methodology for Visual Classifier Selection in Increasingly Noisy Datasets\",\"authors\":\"Wagner S. Billa, Rogério G. Negri, Leonardo B. L. Santos\",\"doi\":\"10.3390/eng4040142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the challenges of selecting robust classifiers with increasing noise levels in real-world scenarios. We propose the WB Score methodology, which enables the identification of reliable classifiers for deployment in noisy environments. The methodology addresses four significant challenges that are commonly encountered: (i) Ensuring classifiers possess robustness to noise; (ii) Overcoming the difficulty of obtaining representative data that captures real-world noise; (iii) Addressing the complexity of detecting noise, making it challenging to differentiate it from natural variations in the data; and (iv) Meeting the requirement for classifiers capable of efficiently handling noise, allowing prompt responses for decision-making. WB Score provides a comprehensive approach for classifier assessment and selection to address these challenges. We analyze five classic datasets and one customized flooding dataset in São Paulo. The results demonstrate the practical effect of using the WB Score methodology is the enhanced ability to select robust classifiers for datasets in noisy real-world scenarios. Compared with similar techniques, the improvement centers around providing a visual and intuitive output, enhancing the understanding of classifier resilience against noise, and streamlining the decision-making process.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4040142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4040142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了在现实场景中选择具有不断增加的噪声水平的鲁棒分类器的挑战。我们提出了WB评分方法,它可以识别在嘈杂环境中部署的可靠分类器。该方法解决了通常遇到的四个重大挑战:(i)确保分类器对噪声具有鲁棒性;克服取得能捕捉真实世界噪音的代表性数据的困难;处理检测噪声的复杂性,使其难以与数据中的自然变化区分开来;(iv)满足分类器的要求,使分类器能够有效地处理噪音,以便迅速作出决策。WB评分为分类器的评估和选择提供了全面的方法,以应对这些挑战。我们分析了五个经典数据集和一个圣保罗洪水定制数据集。结果表明,使用WB评分方法的实际效果是增强了在嘈杂的现实场景中为数据集选择鲁棒分类器的能力。与同类技术相比,改进主要集中在提供视觉和直观的输出,增强对分类器抗噪声弹性的理解,以及简化决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WB Score: A Novel Methodology for Visual Classifier Selection in Increasingly Noisy Datasets
This article addresses the challenges of selecting robust classifiers with increasing noise levels in real-world scenarios. We propose the WB Score methodology, which enables the identification of reliable classifiers for deployment in noisy environments. The methodology addresses four significant challenges that are commonly encountered: (i) Ensuring classifiers possess robustness to noise; (ii) Overcoming the difficulty of obtaining representative data that captures real-world noise; (iii) Addressing the complexity of detecting noise, making it challenging to differentiate it from natural variations in the data; and (iv) Meeting the requirement for classifiers capable of efficiently handling noise, allowing prompt responses for decision-making. WB Score provides a comprehensive approach for classifier assessment and selection to address these challenges. We analyze five classic datasets and one customized flooding dataset in São Paulo. The results demonstrate the practical effect of using the WB Score methodology is the enhanced ability to select robust classifiers for datasets in noisy real-world scenarios. Compared with similar techniques, the improvement centers around providing a visual and intuitive output, enhancing the understanding of classifier resilience against noise, and streamlining the decision-making process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信