承认共形Ricci-Yamabe度量的几乎伪对称Kähler流形

IF 0.7 Q2 MATHEMATICS
Sunil Kumar Yadav, Abdul Haseeb, Nargis Jamal
{"title":"承认共形Ricci-Yamabe度量的几乎伪对称Kähler流形","authors":"Sunil Kumar Yadav, Abdul Haseeb, Nargis Jamal","doi":"10.28924/2291-8639-21-2023-103","DOIUrl":null,"url":null,"abstract":"The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and almost pseudo Bochner Ricci symmetric Kähler manifolds. Also, we explore the harmonic aspects of conformal η-Ricci-Yamabe soliton on Kähler spcetime manifolds with a harmonic potential function f and deduce the necessary and sufficient conditions for the 1-form η, which is the g-dual of the vector field ξ on such spacetime to be a solution of Schrödinger-Ricci equation.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Pseudo Symmetric Kähler Manifolds Admitting Conformal Ricci-Yamabe Metric\",\"authors\":\"Sunil Kumar Yadav, Abdul Haseeb, Nargis Jamal\",\"doi\":\"10.28924/2291-8639-21-2023-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and almost pseudo Bochner Ricci symmetric Kähler manifolds. Also, we explore the harmonic aspects of conformal η-Ricci-Yamabe soliton on Kähler spcetime manifolds with a harmonic potential function f and deduce the necessary and sufficient conditions for the 1-form η, which is the g-dual of the vector field ξ on such spacetime to be a solution of Schrödinger-Ricci equation.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的新颖之处在于研究了几乎伪对称、几乎伪Bochner对称、几乎伪Ricci对称和几乎伪Bochner Ricci对称Kähler流形上的共形Ricci- yamabe孤子的性质。此外,我们还探讨了具有调和势函数f的Kähler时空流形上共形η- ricci - yamabe孤子的调和方面,并推导了该时空上向量场ξ的g对偶η为Schrödinger-Ricci方程解的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Pseudo Symmetric Kähler Manifolds Admitting Conformal Ricci-Yamabe Metric
The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and almost pseudo Bochner Ricci symmetric Kähler manifolds. Also, we explore the harmonic aspects of conformal η-Ricci-Yamabe soliton on Kähler spcetime manifolds with a harmonic potential function f and deduce the necessary and sufficient conditions for the 1-form η, which is the g-dual of the vector field ξ on such spacetime to be a solution of Schrödinger-Ricci equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信