含逃逸随机逻辑映射的无界过渡密度吸收马尔可夫链的拟遍历性

IF 0.8 3区 数学 Q2 MATHEMATICS
MATHEUS M. CASTRO, VINCENT P. H. GOVERSE, JEROEN S. W. LAMB, MARTIN RASMUSSEN
{"title":"含逃逸随机逻辑映射的无界过渡密度吸收马尔可夫链的拟遍历性","authors":"MATHEUS M. CASTRO, VINCENT P. H. GOVERSE, JEROEN S. W. LAMB, MARTIN RASMUSSEN","doi":"10.1017/etds.2023.69","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\\mu $ on M where the transition kernel ${\\mathcal P}$ admits an eigenfunction $0\\leq \\eta \\in L^1(M,\\mu )$ . We find conditions on the transition densities of ${\\mathcal P}$ with respect to $\\mu $ which ensure that $\\eta (x) \\mu (\\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\\mu $ -almost surely. We apply this result to the random logistic map $X_{n+1} = \\omega _n X_n (1-X_n)$ absorbed at ${\\mathbb R} \\setminus [0,1],$ where $\\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\\leq a <4$ and $b>4.$","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape\",\"authors\":\"MATHEUS M. CASTRO, VINCENT P. H. GOVERSE, JEROEN S. W. LAMB, MARTIN RASMUSSEN\",\"doi\":\"10.1017/etds.2023.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\\\\mu $ on M where the transition kernel ${\\\\mathcal P}$ admits an eigenfunction $0\\\\leq \\\\eta \\\\in L^1(M,\\\\mu )$ . We find conditions on the transition densities of ${\\\\mathcal P}$ with respect to $\\\\mu $ which ensure that $\\\\eta (x) \\\\mu (\\\\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\\\\mu $ -almost surely. We apply this result to the random logistic map $X_{n+1} = \\\\omega _n X_n (1-X_n)$ absorbed at ${\\\\mathbb R} \\\\setminus [0,1],$ where $\\\\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\\\\leq a <4$ and $b>4.$\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.69\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.69","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文考虑M上吸收马尔可夫链$X_n$允许一个拟平稳测度$\mu $,其中转移核${\mathcal P}$允许一个本征函数$0\leq \eta \in L^1(M,\mu )$。我们找到了${\mathcal P}$相对于$\mu $的跃迁密度的条件,几乎可以肯定地保证$\eta (x) \mu (\mathrm {d} x)$是$X_n$的拟遍历测度,并且Yaglom极限收敛于拟平稳测度$\mu $。我们将这一结果应用于${\mathbb R} \setminus [0,1],$吸收的随机逻辑图$X_{n+1} = \omega _n X_n (1-X_n)$,其中$\omega _n$是一个独立的、同分布的随机变量序列,这些随机变量均匀分布在$1\leq a <4$和$[a,b],$中 $b>4.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape
Abstract In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\mu $ on M where the transition kernel ${\mathcal P}$ admits an eigenfunction $0\leq \eta \in L^1(M,\mu )$ . We find conditions on the transition densities of ${\mathcal P}$ with respect to $\mu $ which ensure that $\eta (x) \mu (\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\mu $ -almost surely. We apply this result to the random logistic map $X_{n+1} = \omega _n X_n (1-X_n)$ absorbed at ${\mathbb R} \setminus [0,1],$ where $\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\leq a <4$ and $b>4.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信